Skip to main content

Evidence accumulation in decision making: Unifying the “take the best” and the “rational” models

Abstract

An evidence accumulation model of forced-choice decision making is proposed to unify the fast and frugaltake the best (TTB) model and the alternativerational (RAT) model with which it is usually contrasted. The basic idea is to treat the TTB model as a sequential-sampling process that terminates as soon as any evidence in favor of a decision is found and the rational approach as a sequential-sampling process that terminates only when all available information has been assessed. The unified TTB and RAT models were tested in an experiment in which participants learned to make correct judgments for a set of real-world stimuli on the basis of feedback, and were then asked to make additional judgments without feedback for cases in which the TTB and the rational models made different predictions. The results show that, in both experiments, there was strong intraparticipant consistency in the use of either the TTB or the rational model but large interparticipant differences in which model was used. The unified model is shown to be able to capture the differences in decision making across participants in an interpretable way and is preferred by the minimum description length model selection criterion.

References

  1. Allen, C. (2000). The evolution of rational demons [Abstract].Behavioral & Brain Sciences,23, 742.

    Article  Google Scholar 

  2. Anderson, J. R. (1990).The adaptive character of thought. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  3. Anderson, J. R. (1991). The adaptive nature of human categorization.Psychological Review,98, 409–429.

    Article  Google Scholar 

  4. Anderson, J. R. (1992). Is human cognition adaptive?Behavioral & Brain Sciences,14, 471–517.

    Google Scholar 

  5. Ashby, F. G. (1983). A biased random walk model of two choice reaction times.Journal of Mathematical Psychology,27, 277–297.

    Article  Google Scholar 

  6. Bröder, A. (2000). Assessing the empirical validity of the “take-thebest” heuristic as a model of human probabilistic inference.Journal of Experimental Psychology: Learning, Memory, & Cognition,26, 1332–1346.

    Article  Google Scholar 

  7. Brunswik, E. (1943). Organismic achievement and environmental probabilities.Psychological Review,50, 255–272.

    Article  Google Scholar 

  8. Bullock, S., &Todd, P. M. (1999). Made to measure: Ecological rationality in structured environments.Minds & Machines,9, 497–541.

    Article  Google Scholar 

  9. Busemeyer, J. R., &Rapoport, A. (1988). Psychological models of deferred decision making.Journal of Mathematical Psychology,32, 91–134.

    Article  Google Scholar 

  10. Busemeyer, J. R., &Townsend, J. T. (1993). Decision field theory: A dynamic cognition approach to decision making.Psychological Review,100, 432–459.

    Article  PubMed  Google Scholar 

  11. Cousineau, D., &Larochelle, S. (1997). PASTIS: A program for curve and distribution analyses.Behavior Research Methods, Instruments, & Computers,29, 542–548.

    Google Scholar 

  12. Czerlinski, J., Gigerenzer, G., &Goldstein, D. C. (1999). How good are simple heuristics? In G. Gigerenzer & P. M. Todd (Eds.),Simple heuristics that make us smart (pp. 97–117). New York: Oxford University Press.

    Google Scholar 

  13. Diederich, A. (1997). Dynamic stochastic models for decision making under time constraints.Journal of Mathematical Psychology,41, 260–274.

    Article  PubMed  Google Scholar 

  14. Doyle, J. (1999). Rational decision making. In R. A. Wilson & F. C. Keil (Eds.),MIT encyclopedia of the cognitive sciences (pp. 701–703). Cambridge, MA: MIT Press.

    Google Scholar 

  15. Gelman, A., Carlin, J. B., Stern, H. S., &Rubin, D. B. (1995).Bayesian data analysis. London: Chapman & Hall.

    Google Scholar 

  16. Gigerenzer, G., &Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality.Psychological Review,103, 650–669.

    Article  PubMed  Google Scholar 

  17. Gigerenzer, G., &Todd, P. M. (1999).Simple heuristics that make us smart. New York: Oxford University Press.

    Google Scholar 

  18. Grünwald, P. (1999). Viewing all models as “probabilistic.” InProceedings of the Twelfth Annual Conference on Computational Learning Theory (COLT ’99) (pp.171–182). New York: ACM Press.

    Chapter  Google Scholar 

  19. Grünwald, P. (2000). Model selection based on minimum description length.Journal of Mathematical Psychology,44, 133–152.

    Article  PubMed  Google Scholar 

  20. Hintzman, D. L. (1984). MINERVA 2: A simulation model of human memory.Behavior Research Methods, Instruments, & Computers,16, 96–101.

    Google Scholar 

  21. Ida, M. (1980). The application of the Weibull distribution to the analysis of the reaction time data.Japanese Psychological Research,22, 207–212.

    Google Scholar 

  22. Johnson, M. P., &Raven, P. H. (1973). Species number and endemism: The Galapagos archipelago revisited.Science,179, 893–895.

    Article  PubMed  Google Scholar 

  23. Juslin, P., &Olsson, H. (1997). Thurstonian and Brunswikian origins of uncertainty in judgment: A sampling model of confidence in sensory discrimination.Psychological Review,104, 344–366.

    Article  PubMed  Google Scholar 

  24. Kass, R. E., &Raftery, A. E. (1995). Bayes factors.Journal of the American Statistical Association,90, 773–795.

    Article  Google Scholar 

  25. Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning.Psychological Review,99, 22–44.

    Article  PubMed  Google Scholar 

  26. Laming, D. R. J. (1968).Information theory and choice-reaction time. London: Academic Press.

    Google Scholar 

  27. Lee, M. D., Chandrasena, L. H., &Navarro, D. J. (2002). Using cognitive decision models to prioritize e-mails. In W. G. Gray & C. D. Schunn (Eds.),Proceedings of the 24th Annual Conference of the Cognitive Science Society (pp. 478–483). Mahwah, NJ: Erlbaum.

    Google Scholar 

  28. Lee, M. D., &Corlett, E. Y. (2003). Sequential sampling models of human text classification.Cognitive Science,27, 159–193.

    Article  Google Scholar 

  29. Lee, M. D., Loughlin, N., &Lundberg, I. B. (2002). Applying one reason decision making: The prioritization of literature searches.Australian Journal of Psychology,54, 137–143.

    Article  Google Scholar 

  30. Link, S. W., &Heath, R. A. (1975). A sequential theory of psychological discrimination.Psychometrika,40, 77–105.

    Article  Google Scholar 

  31. Logan, G. D. (1992). Shapes of reaction-time distributions and shapes of learning curves: A test of the instance theory of automaticity.Journal of Experimental Psychology: Learning, Memory, & Cognition,18, 883–914.

    Article  Google Scholar 

  32. Martignon, L., &Hoffrage, U. (1999). Why does one-reason decision making work? In G. Gigerenzer & P. Todd (Eds.),Simple heuristics that make us smart (pp. 119–140). New York: Oxford University Press.

    Google Scholar 

  33. Martignon, L., &Laskey, K. B. (1999). Bayesian benchmarks for fast and frugal heuristics. In G. Gigerenzer & P. M. Todd (Eds.),Simple heuristics that make us smart (pp. 169–188). New York: Oxford University Press.

    Google Scholar 

  34. Medin, D. L., &Schaffer, M. M. (1978). Context theory of classification.Psychological Review,85, 207–238.

    Article  Google Scholar 

  35. Myung, I. J., &Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition: A Bayesian approach.Psychonomic Bulletin & Review,4, 79–95.

    Google Scholar 

  36. Myung, I. J., Pitt, M. A., & Kim, W. J. (in press). Model evaluation, testing and selection. In K. Lamberts & R. Goldstone (Eds.),Handbook of cognition. Thousand Oaks, CA: Sage.

  37. Myung, I. J., &Shepard, R. N. (1996). Maximum entropy inference and stimulus generalization.Journal of Mathematical Psychology,40, 342–347.

    Article  Google Scholar 

  38. Newell, B. R., Weston, N. J., &Shanks, D. R. (2003). Empirical tests of a fast-and-frugal heuristic: Not everyone “takes-the-best.”Organizational Behavior & Human Decision Processes,91, 82–96.

    Article  Google Scholar 

  39. Nosofsky, R. M. (1984). Choice, similarity, and the context theory of classification.Journal of Experimental Psychology: Learning, Memory, & Cognition,10, 104–114.

    Article  Google Scholar 

  40. Nosofsky, R. M., &Palmeri, T. J. (1997). An exemplar-based random walk model of speeded classification.Psychological Review,104, 266–300.

    Article  PubMed  Google Scholar 

  41. Pietsch, A., &Vickers, D. (1997). Memory capacity and intelligence: Novel techniques for evaluating rival models of a fundamental information processing mechanism.Journal of General Psychology,124, 229–339.

    Article  PubMed  Google Scholar 

  42. Pinker, S. (1997).How the mind works. New York: Norton.

    Google Scholar 

  43. Pitt, M. A., Myung, I. J., &Zhang, S. (2002). Toward a method of selecting among computational models of cognition.Psychological Review,109, 472–491.

    Article  PubMed  Google Scholar 

  44. Ratcliff, R. (1978). A theory of memory retrieval.Psychological Review,85, 59–108.

    Article  Google Scholar 

  45. Rissanen, J. (2001). Strong optimality of the normalized ML models as universal codes and information in data.IEEE Transactions on Information Theory,47, 1712–1717.

    Article  Google Scholar 

  46. Roberts, S., &Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing.Psychological Review,107, 358–367.

    Article  PubMed  Google Scholar 

  47. Schwarz, G. (1978). Estimating the dimension of a model.Annals of Statistics,6, 461–464.

    Article  Google Scholar 

  48. Shepard, R. N. (1987). Toward a universal law of generalization for psychological science.Science,237, 1317–1323.

    Article  PubMed  Google Scholar 

  49. Simon, H. A. (1956). Rational choice and the structure of environments.Psychological Review,63, 129–138.

    Article  PubMed  Google Scholar 

  50. Simon, H. A. (1976). From substantive to procedural rationality. In S. J. Latsis (Ed.),Method and appraisal in economics (pp. 129–148). London: Cambridge University Press.

    Google Scholar 

  51. Simon, H. A. (1982).Models of bounded rationality. Cambridge, MA: MIT Press.

    Google Scholar 

  52. Smith, P. L. (2000). Stochastic dynamic models of response time and accuracy: A foundational primer.Journal of Mathematical Psychology,44, 408–463.

    Article  PubMed  Google Scholar 

  53. Tenenbaum, J. B. (1999). Bayesian modeling of human concept learning. In M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.),Advances in neural information processing systems (Vol. 11, pp. 59–65). Cambridge, MA: MIT Press.

    Google Scholar 

  54. Tenenbaum, J. B., &Griffiths, T. L. (2001). Generalization, similarity, and Bayesian inference.Behavioral & Brain Sciences,24, 629–640.

    Google Scholar 

  55. Todd, P. M., &Gigerenzer, G. (2000). Précis of Simple heuristics that make us smart.Behavioral & Brain Sciences,23, 727–780.

    Article  Google Scholar 

  56. Tversky, A. (1977). Features of similarity.Psychological Review,84, 327–352.

    Article  Google Scholar 

  57. Usher, M., &McClelland, J. L. (2001). On the time course of perceptual choice: The leaky competing accumulator model.Psychological Review,108, 550–592.

    Article  PubMed  Google Scholar 

  58. Vandierendonck, A., &Rosseel, Y. (2000). Interaction of knowledgedriven and data-driven processing in category learning.European Journal of Cognitive Psychology,72, 37–63.

    Google Scholar 

  59. Van Zandt, T. (2000). How to fit a response time distribution.Psychonomic Bulletin & Review,7, 424–465.

    Google Scholar 

  60. Vickers, D. (1979).Decision processes in visual perception. New York: Academic Press.

    Google Scholar 

  61. Vickers, D. (2001, September).The elusive “interval of uncertainty”: Evidence for a dynamic normalizing of sensory magnitudes. Paper presented at the 32nd Meeting of the European Mathematical Psychology Group, Lisbon.

  62. Vickers, D., &Pietsch, A. (2001). Decision-making and memory: A critique of Juslin and Olsson’s (1997) sampling model of sensory discrimination.Psychological Review,108, 789–804.

    Article  PubMed  Google Scholar 

  63. Wallsten, T. S., &Barton, C. (1982). Processing probabilistic multidimensional information for decisions.Journal of Experimental Psychology: Learning, Memory, & Cognition,8, 361–384.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael D. Lee.

Additional information

This research was supported by Australian Research Council Grant DP0211406.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, M.D., Cummins, T.D.R. Evidence accumulation in decision making: Unifying the “take the best” and the “rational” models. Psychonomic Bulletin & Review 11, 343–352 (2004). https://doi.org/10.3758/BF03196581

Download citation

Keywords

  • Unify Model
  • Stimulus Pair
  • Evidence Accumulation
  • Stimulus Domain
  • Random Walk Move