Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Psychonomic Bulletin & Review
  3. Article
The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Performance on the processing portion of complex working memory span tasks is related to working memory capacity estimates

05 August 2021

Lauren L. Richmond, Lois K. Burnett, … B. Hunter Ball

General intelligence is associated with working memory-related brain activity: new evidence from a large sample study

08 September 2018

Hikaru Takeuchi, Yasuyuki Taki, … Ryuta Kawashima

How do we measure attention? Using factor analysis to establish construct validity of neuropsychological tests

22 July 2021

Melissa Treviño, Xiaoshu Zhu, … Todd S. Horowitz

A model comparison approach reveals individual variation in the scope and control of attention

08 June 2020

Daniel Schor, Alex S. Brodersen & Bradley S. Gibson

Inhibitory control mediates a negative relationship between body mass index and intelligence: A neurocognitive investigation

06 February 2019

L. Faul, N. D. Fogleman, … B. E. Depue

The role of attention control in complex real-world tasks

15 February 2022

Christopher Draheim, Richard Pak, … Randall W. Engle

The Factor Structure of Cognitive Functioning in Cognitively Healthy Participants: a Meta-Analysis and Meta-Analysis of Individual Participant Data

01 February 2020

Joost A. Agelink van Rentergem, Nathalie R. de Vent, … Hilde M. Huizenga

The developmental trajectories of executive function from adolescence to old age

14 January 2021

Heather J. Ferguson, Victoria E. A. Brunsdon & Elisabeth E. F. Bradford

Multiple processing limitations underlie multitasking costs

09 May 2019

Kelvin F. H. Lui & Alan C.-N. Wong

Download PDF
  • Theoretical and Review Articles
  • Published: December 2002

The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective

  • Michael J. Kane1 &
  • Randall W. Engle2 

Psychonomic Bulletin & Review volume 9, pages 637–671 (2002)Cite this article

  • 22k Accesses

  • 1428 Citations

  • 19 Altmetric

  • Metrics details

Abstract

We provide an “executive-attention” framework for organizing the cognitive neuroscience research on the constructs of working-memory capacity (WMC), general fluid intelligence, and prefrontal cortex (PFC) function. Rather than provide a novel theory of PFC function, we synthesize a wealth of singlecell, brain-imaging, and neuropsychological research through the lens of our theory of normal individual differences in WMC and attention control (Engle, Kane, & Tuholski, 1999; Engle, Tuholski, Laughlin, & Conway, 1999). Our critical review confirms the prevalent view that dorsolateral PFC circuitry is critical to executive-attention functions. Moreover, although the dorsolateral PFC is but one critical structure in a network of anterior and posterior “attention control” areas, it does have a unique executiveattention role in actively maintaining access to stimulus representations and goals in interference-rich contexts. Our review suggests the utility of an executive-attention framework for guiding future research on both PFC function and cognitive control.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Ackerly, S. (1937). Instinctive, emotional and mental changes following prefrontal lobe extirpation.American Journal of Psychiatry,92, 717–729.

    Google Scholar 

  • Ahola, K., Vilkki, J., &Servo, A. (1996). Frontal tests do not detect frontal infarctions after ruptured intracranial aneurysm.Brain & Cognition,31, 1–16.

    Google Scholar 

  • Alexander, G. E., &Fuster, J. M. (1973). Effects of cooling prefrontal cortex on cell firing in the nucleus medialis dorsalis.Brain Research,61, 93–105.

    PubMed  Google Scholar 

  • Allport, D. A., Styles, E. A., &Hsieh, S. (1994). Shifting attentional set: Exploring the dynamic control of tasks. In C. Umiltà & M. Moscovitch (Eds.),Attention and performance XV: Conscious and nonconscious information processing (pp. 421–452). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Anderson, S. W., Damasio, H., Jones, R. D., &Tranel, D. (1991). Wisconsin Card Sorting Test performance as a measure of frontal lobe damage.Journal of Clinical & Experimental Neuropsychology,13, 909–922.

    Google Scholar 

  • Arthur, W., Jr.,Barrett, G. V., &Doverspike, D. (1990). Validation of an information-processing-based test battery for the prediction of handling accidents among petroleum-product transport drivers.Journal of Applied Psychology,75, 621–628.

    Google Scholar 

  • Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A., &Katz, S. (1996). Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography.Psychological Science,7, 25–31.

    Google Scholar 

  • Baddeley, A. D. (1996). Exploring the central executive.Quarterly Journal of Experimental Psychology,49A, 5–28.

    Google Scholar 

  • Baddeley, A. D., Della Sala, S., Papagno, C., &Spinnler, H. (1997). Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion.Neuropsychology,11, 187–194.

    PubMed  Google Scholar 

  • Baddeley, A. D., &Hitch, G. (1974). Working memory. In G. A. Bower (Ed.),The psychology of learning and motivation (Vol. 8, pp. 47–89). New York: Academic Press.

    Google Scholar 

  • Baddeley, A. D., &Logie, R. (1999). Working memory: The multiple component model. In A. Miyake & P. Shah (Eds.),Models of working memory: Mechanisms of active maintenance and executive control (pp. 28–61). New York: Cambridge University Press.

    Google Scholar 

  • Baker, S. C., Frith, C. D., Frackowiak, R. S. J., &Dolan, R. J. (1996). Active representation of shape and spatial location in man.Cerebral Cortex,6, 612–619.

    PubMed  Google Scholar 

  • Baldo, J. V., &Shimamura, A. P. (1998). Letter and category fluency in patients with frontal lobe lesions.Neuropsychology,12, 259–267.

    PubMed  Google Scholar 

  • Baldo, J. V., &Shimamura, A. P. (2000). Spatial and color working memory in patients with lateral prefrontal cortex lesions.Psychobiology,28, 156–167.

    Google Scholar 

  • Banich, M. T., Milham, M. P., Atchley, R. A., Cohen, N. J., Webb, A., Wszalek, T., Kramer, A. F., Liang, Z. P., Wright, A., Shenker, J., &Magin, R. (2000). fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection.Journal of Cognitive Neuroscience,12, 988–1000.

    PubMed  Google Scholar 

  • Barbas, H., &Mesulam, M. M. (1981). Organization of afferent input to subdivisions of area 8 in the rhesus monkey.Journal of Comparative Neurology200, 407–431.

    PubMed  Google Scholar 

  • Barbas, H., &Mesulam, M. M. (1985). Cortical afferent input to the principalis region of the rhesus monkey.Neuroscience,15, 619–637.

    PubMed  Google Scholar 

  • Barbas, H., &Pandya, D. N. (1991). Patterns of connections of the prefrontal cortex in the rhesus monkey associated with cortical architecture. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.),Frontal lobe function and dysfunction (pp. 35–58). Oxford: Oxford University Press.

    Google Scholar 

  • Barch, D. M., Braver, T. S., Nyström, L. E., Forman, S. D., Noll, D. C., &Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex.Neuropsychologia,35, 1373–1380.

    PubMed  Google Scholar 

  • Bartus, R. T., &LaVere, T. E. (1977). Frontal decortication in rhesus monkeys: A test of the interference hypothesis.Brain Research,119, 233–248.

    PubMed  Google Scholar 

  • Battersby, W. S., Krieger, H. P., Pollack, M., &Bender, M. B. (1953). Figure-ground discrimination and the “abstract attitude” in patients with cerebral lesions.Archives of Neurology & Psychiatry,70, 703–712.

    Google Scholar 

  • Battig, K., Rosvold, H. E., &Mishkin, M. (1960). Comparison of the effects of frontal and caudate lesions on delayed response and alternation in monkeys.Journal of Comparative & Physiological Psychology,53, 400–404.

    Google Scholar 

  • Batuev, A. S., Shaefer, V. I., &Orlov, A. A. (1985). Comparative characteristics of unit activity in the prefrontal and parietal areas during delayed performance in monkeys.Behavioural Brain Research,16, 57–70.

    PubMed  Google Scholar 

  • Bauer, R. H., &Fuster, J. M. (1976). Delayed-matching and delayedresponse deficit from cooling dorsolateral prefrontal cortex in monkeys.Journal of Comparative & Physiological Psychology,90, 293–302.

    Google Scholar 

  • Baylis, G. C., &Rolls, E. T. (1987). Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks.Experimental Brain Research,65, 614–622.

    Google Scholar 

  • Bechara, A., Damasio, H., Tranel, D., &Anderson, S. W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex.Journal of Neuroscience,18, 428–437.

    PubMed  Google Scholar 

  • Bench, C. J., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S. J., &Dolan, R. J. (1993). Investigations of the functional anatomy of attention using the Stroop test.Neuropsychologia,31, 907–922.

    PubMed  Google Scholar 

  • Benedict, R. H. B., Lockwood, A. H., Shucard, J. L., Shucard, D.W., Wack, D., &Murphy, B. W. (1998). Functional neuroimaging of attention in the auditory modality.NeuroReport,9, 121–126.

    PubMed  Google Scholar 

  • Benton, A. L. (1968). Differential behavioral effects in frontal lobe disease.Neuropsychologia,6, 53–60.

    Google Scholar 

  • Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking.Journal of General Psychology,39, 15–22.

    PubMed  Google Scholar 

  • Berman, K. F., Ostrem, J. L., Randolph, C., Gold, J., Goldberg, T.E., Coppola, R., Carson, R. E., Herscovitch, P., &Weinberger, D. R. (1995). Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A positron emission tomography study.Neuropsychologia,33, 1027–1046.

    PubMed  Google Scholar 

  • Berman, K. F., Zec, R. F., &Weinberger, D. R. (1986). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: II. Role of neuroleptic treatment, attention, and mental effort.Archives of General Psychiatry,43, 126–135.

    PubMed  Google Scholar 

  • Bleckley, M. K. (2001).Individual differences in visual attention and working memory capacity: Further distinctions between where and what. Unpublished doctoral dissertation, Georgia Institute of Technology.

  • Bolter, J. F., Long, C. J., &Wagner, M. (1983). The utility of the Thurstone Word Fluency Test in identifying cortical damage.Clinical Neuropsychology,5, 77–82.

    Google Scholar 

  • Boone, K. B. (1999). Neuropsychological assessment of executive functions: Impact of age, education, gender, intellectual level, and vas cular status on executive test scores. In B. L. Miller & J. L. Cummings (Eds.),The human frontal lobes: Functions and disorders (pp. 247–260). New York: Guilford.

    Google Scholar 

  • Borkowski, J. G. (1965). Interference effects in short-term memory as a function of level of intelligence.American Journal of Mental Deficiency,70, 458–465.

    PubMed  Google Scholar 

  • Boussaoud, D., &Wise, S. P. (1993). Primate frontal cortex: Neuronal activity following attentional versus intentional cues.Experimental Brain Research,95, 15–27.

    Google Scholar 

  • Braver, T. S., Barch, D. M., Kelley, W. M., Buckner, R. L., Cohen, N. J., Miezin, F. M., Snyder, A. Z., Ollinger, J. M., Akbudak, E., Conturo, T. E., &Petersen, S. E. (2001). Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks.NeuroImage,14, 48–59.

    PubMed  Google Scholar 

  • Braver, T. S., &Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. In S. Monsell & J. Driver (Eds.),Attention and performance XVIII: Control of cognitive processes (pp. 713–737). Cambridge, MA: MIT Press.

    Google Scholar 

  • Braver, T. S., Cohen, J. D., Nyström, L. E., Jonides, J., Smith, E. E., &Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory.NeuroImage,5, 49–62.

    PubMed  Google Scholar 

  • Brodmann, K. (1925).Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig, Germany: Barth.

    Google Scholar 

  • Butters, M. A., Kaszniak, A. W., Glisky, E. L., Eslinger, P. J., &Schacter, D. L. (1994). Recency discrimination deficits in frontal lobe patients.Neuropsychology,8, 343–353.

    Google Scholar 

  • Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., Goldberg, T. E., &Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI.Cerebral Cortex,9, 20–26.

    PubMed  Google Scholar 

  • Carpenter, P. A., Just, M. A., &Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices test.Psychological Review,97, 404–431.

    PubMed  Google Scholar 

  • Carroll, J. B. (1993).Human cognitive abilities: A survey of factoranalytic studies. New York: Cambridge University Press.

    Google Scholar 

  • Carroll, J. B. (1996). A three-striatum theory of intelligence: Spearman’s contribution. In I. Dennis & P. Tapsfield (Eds.),Human abilities: Their nature and measurement (pp. 1–17). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Casey, B. J., Cohen, J. D., O’Craven, K., Davidson, R. J., Irwin, W., Nelson, C. A., Noll, D. C., Hu, X., Lowe, M. J., Rosen, B. R., Truwitt, C. L., &Turski, P. A. (1998). Reproducibility of fMRI results across four institutions using a spatial working memory task.NeuroImage,8, 249–261.

    PubMed  Google Scholar 

  • Chao, L. L., &Knight, R. T. (1998). Contribution of human prefrontal cortex to delay performance.Journal of Cognitive Neuroscience,10, 167–177.

    PubMed  Google Scholar 

  • Chorover, S. L., &Cole, M. (1966). Delayed alternation performance in patients with cerebral lesions.Neuropsychologia,4, 1–7.

    Google Scholar 

  • Chow, T. W., &Cummings, J. L. (1999). Frontal-subcortical circuits. In B. L. Miller & J. L. Cummings (Eds.),The human frontal lobes: Functions and disorders (pp. 3–26). New York: Guilford.

    Google Scholar 

  • Cicerone, K. D., Lazar, R. M., &Shapiro, W. R. (1983). Effects of frontal lobe lesions on hypothesis sampling during concept formation.Neuropsychologia,21, 513–524.

    PubMed  Google Scholar 

  • Cohen, J. D., Braver, T. S., &O’Reilly, R. C. (1996). A computational approach to prefrontal cortex, cognitive control and schizophrenia: Recent developments and current challenges.Philosophical Transactions of the Royal Society of London: Series B,351, 1515–1527.

    Google Scholar 

  • Cohen, J. D., Braver, T. S., &O’Reilly, R. C. (1998). A computational approach to prefrontal cortex, cognitive control and schizophrenia: Recent developments and current challenges. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.),The prefrontal cortex: Executive and cognitive functions (pp. 195–220). Oxford: Oxford University Press.

    Google Scholar 

  • Cohen, J. D., Dunbar, K., &McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect.Psychological Review,97, 332–361.

    PubMed  Google Scholar 

  • Cohen, J. D., Forman, S. D., Braver, T. S., Casey, B. J., Servan-Schreiber, D., &Noll, D. C. (1994). Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI.Human Brain Mapping,1, 293–304.

    Google Scholar 

  • Cohen, J. D., Perlstein, W. M., Braver, T. S., Nyström, L. E., Noll, D. C., Jonides, J., &Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task.Nature,386, 604–608.

    PubMed  Google Scholar 

  • Cohen, J. D., &Servan-Schreiber, D. (1992). Context, cortex, and dopamine: A connectionist approach to behavior and biology in schizophrenia.Psychological Review,99, 45–77.

    PubMed  Google Scholar 

  • Constantinidis, C., &Steinmetz, M. A. (1996). Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task.Journal of Neurophysiology,76, 1352–1355.

    PubMed  Google Scholar 

  • Conway, A. R. A., Cowan, N., &Bunting, M. F. (2001). The cocktail party phenomenon revisited: The importance of working memory capacity.Psychonomic Bulletin & Review,8, 331–335.

    Google Scholar 

  • Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D., &Minkoff, S. (2002). A latent variable analysis of working memory capacity, short term memory capacity, processing speed, and general fluid intelligence.Intelligence,30, 163–183.

    Google Scholar 

  • Conway, A. R. A., &Engle, R. W. (1994). Working memory and retrieval: A resource-dependent inhibition model.Journal of Experimental Psychology: General,123, 354–373.

    Google Scholar 

  • Conway, A. R. A., &Engle, R. W. (1996). Individual differences in working memory capacity: More evidence for a general capacity theory.Memory,4, 577–590.

    PubMed  Google Scholar 

  • Conway, A. R. A., &Kane, M. J. (2001). Capacity, control and conflict: An individual differences perspective on attentional capture. In C. Folk & B. Gibson (Eds.),Attraction, distraction and action: Multiple perspectives on attention capture (pp. 349–372). Amsterdam: Elsevier.

    Google Scholar 

  • Conway, A. R. A., Tuholski, S. W., Shisler, R. J., &Engle, R. W. (1999). The effect of memory load on negative priming: An individual differences investigation.Memory & Cognition,27, 1042–1050.

    Google Scholar 

  • Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., &Peterson, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography.Journal of Neuroscience,11, 2383–2402.

    PubMed  Google Scholar 

  • Corcoran, R., &Upton, D. (1993). A role for the hippocampus in card sorting?Cortex,29, 293–304.

    PubMed  Google Scholar 

  • Coslett, H. B., Bowers, D., Verfaellie, M., &Heilman, K. M. (1991). Frontal verbal amnesia: Phonological amnesia.Archives of Neurology,48, 949–955.

    PubMed  Google Scholar 

  • Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., &Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex.Science,279, 1347–1351.

    PubMed  Google Scholar 

  • Courtney, S. M., Ungerleider, L. G., Keil, K., &Haxby, J. V. (1996). Object and spatial working memory activate separate neural systems in human cortex.Cerebral Cortex,6, 39–49.

    PubMed  Google Scholar 

  • Courtney, S. M., Ungerleider, L. G., Keil, K., &Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory.Nature,386, 608–611.

    PubMed  Google Scholar 

  • Cowan, N. (1995).Attention and memory: An integrated framework. Oxford: Oxford University Press.

    Google Scholar 

  • Cowan, N. (1999). An embedded-process model of working memory. In A. Miyake & P. Shah (Eds.),Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). New York: Cambridge University Press.

    Google Scholar 

  • Crawford, J. D., &Stankov, L. (1983). Fluid and crystallized intelligence and primacy/recency components of short-term memory.Intelligence,7, 227–252.

    Google Scholar 

  • Cuenod, C. A., Bookheimer, S. Y., Hertz-Pannier, L., Zeffiro, T.A., Theodore, W. H., &Le Bihan, D. (1995). Functional MRI during word generation, using conventional equipment: A potential tool for language localization in the clinical environment.Neurology,45, 1821–1827.

    PubMed  Google Scholar 

  • Damasio, H. C. (1991). Neuroanatomy of frontal lobe in vivo: A comment on methodology. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.),Frontal lobe function and dysfunction (pp. 92–121). Oxford: Oxford University Press.

    Google Scholar 

  • D’Amato, M. R., &O’Neill, W. (1971). Effect of delay-interval illumination on matching behavior in the capuchin monkey.Journal of the Experimental Analysis of Behavior,15, 327–333.

    PubMed  Google Scholar 

  • Daneman, M., &Carpenter, P. A. (1980).Individual differences in working memory and reading.Journal of Verbal Learning & Verbal Behavior,19, 450–466.

    Google Scholar 

  • Daneman, M., &Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis.Psychonomic Bulletin & Review,3, 422–433.

    Google Scholar 

  • Daneman, M., &Tardif, T. (1987). Working memory and reading skill reexamined. In M. Coltheart (Ed.),Attention and performance XII: The psychology of reading (pp. 491–508). Hove, U.K.: Erlbaum.

    Google Scholar 

  • Dehaene, S., &Changeux, J. P. (1989). A simple model of prefrontal cortex function in delayed-response tasks.Journal of Cognitive Neuroscience,1, 244–261.

    Google Scholar 

  • De Jong, R. D., Berendsen, E., &Cools, R. (1999). Goal neglect and inhibitory limitations: Dissociable causes of interference effects in conflict situations.Acta Psychologica,101, 379–394.

    PubMed  Google Scholar 

  • Delis, D. C., Squire, L. R., Bihrle, A., &Massman, P. (1992). Componential analysis of problem-solving ability: Performance of patients with frontal lobe damage and amnesic patients on a new sorting test.Neuropsychologia,30, 683–697.

    PubMed  Google Scholar 

  • Dempster, F. N. (1991). Inhibitory processes: A neglected dimension in intelligence.Intelligence,15, 157–173.

    Google Scholar 

  • Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging.Developmental Review,12, 45–75.

    Google Scholar 

  • Dempster, F. N., &Corkill, A. J. (1999). Individual differences in susceptibility to interference and general cognitive ability.Acta Psychologica,101, 395–416.

    Google Scholar 

  • Desimone, R., &Duncan, J. (1995). Neural mechanisms of selective visual attention.Annual Review of Neuroscience,18, 193–222.

    PubMed  Google Scholar 

  • D’Esposito, M., Aguirre, G. K., Zarahn, E. K., Ballard, D., Shin, R. K., &Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory.Cognitive Brain Research,7, 1–13.

    PubMed  Google Scholar 

  • D’Esposito, M., Ballard, D., Aguirre, G. K., &Zarahn, E. (1998). Human prefrontal cortex is not specific for working memory: A functional MRI study.NeuroImage,8, 274–282.

    PubMed  Google Scholar 

  • D’Esposito, M., Ballard, D., Zarahn, E., &Aguirre, G. K. (2000). The role of prefrontal cortex in sensory memory and motor preparation: An event-related fMRI study.NeuroImage,11, 400–408.

    PubMed  Google Scholar 

  • D’Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., &Grossman, M. (1995). The neural basis of the central executive system of working memory.Nature,378, 279–281.

    PubMed  Google Scholar 

  • D’Esposito, M., Postle, B. R., Ballard, D., &Lease, J. (1999). Maintenance versus manipulation of information held in working memory: An event-related fMRI study.Brain & Cognition,41, 66–86.

    Google Scholar 

  • D’Esposito, M., Postle, B. R., Jonides, J., &Smith, E. E. (1999). The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI.Proceedings of the National Academy of Sciences,96, 7514–7519.

    Google Scholar 

  • Diamond, A. (1990). Developmental time course in human infants and infant monkeys, and the neural bases of, inhibitory control of reaching. In A. Diamond (Ed.),The development and neural bases of higher cognitive functions (Annals of the New York Academy of Sciences, Vol. 608, pp. 637–676). New York: New York Academy of Sciences.

    Google Scholar 

  • Diamond, A. (1991). Frontal lobe involvement in cognitive changes during the first year of life. In K. R. Gibson & A. C. Peterson (Eds.),Brain maturation and cognitive development: Comparative and cross-cultural perspectives (pp. 127–180). New York: de Gruyter.

    Google Scholar 

  • Dias, R., Robbins, T. W., &Roberts, A. C. (1996a). Dissociation in prefrontal cortex of affective and attentional shifts.Nature,380, 69–72.

    PubMed  Google Scholar 

  • Dias, R., Robbins, T. W., &Roberts, A. C. (1996b). Primate analogue of the Wisconsin Card Sorting Test: Effects of excitotoxic lesions of the prefrontal cortex in the marmoset.Behavioral Neuroscience,110, 872–886.

    PubMed  Google Scholar 

  • Dias, R., Robbins, T. W., &Roberts, A. C. (1997). Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: Restriction to novel situations and independence from “on-line” processing.Journal of Neuroscience,17, 9285–9297.

    PubMed  Google Scholar 

  • di Pellegrino, G., &Wise, S. P. (1993a). Effects of attention on visuomotor activity in the premotor and prefrontal cortex of a primate.Somatosensory & Motor Research,10, 245–262.

    Google Scholar 

  • di Pellegrino, G., &Wise, S. P. (1993b). Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate.Journal of Neuroscience,13, 1227–1243.

    PubMed  Google Scholar 

  • Diwadkar, V. A., Carpenter, P. A., &Just, M. A. (2000). Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI.NeuroImage,12, 85–99.

    PubMed  Google Scholar 

  • Dolan, R. J., &Fletcher, P. C. (1997). Dissociating prefrontal and hippocampal function in episodic memory encoding.Nature,388, 582–585.

    PubMed  Google Scholar 

  • Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J., &von Cramon, D. Y. (2000). Prefrontal cortex activation in task switching: An event-related fMRI study.Cognitive Brain Research,9, 103–109.

    PubMed  Google Scholar 

  • Drewe, E. A. (1974). The effect of type and area of brain lesion on Wisconsin Card Sorting Test performance.Cortex,10, 159–170.

    PubMed  Google Scholar 

  • Dubois, B., Levy, R., Verin, M., Teixeira, C., Agid, Y., &Pillon, B. (1995). Experimental approach to prefrontal functions in humans.Annals of the New York Academy of Sciences,769, 41–60.

    PubMed  Google Scholar 

  • Dunbar, K., &Sussman, D. (1995). Toward a cognitive account of frontal lobe function: Simulating frontal lobe deficits in normal subjects. In J. Grafman, K. J. Holyoak, & F. Butler (Eds.),Structure and functions of the human prefrontal cortex (Annals of the New York Academy of Sciences, Vol. 769, pp. 289–304). New York: New York Academy of Sciences.

    Google Scholar 

  • Duncan, J. (1990). Goal weighting and the choice of behavior in a complex world.Ergonomics,33, 1265–1279.

    Google Scholar 

  • Duncan, J. (1993). Selection of input and goal in the control of behavior. In A. Baddeley & L. Weiskrantz (Eds.),Attention: Selection, awareness, and control. A tribute to Donald Broadbent (pp. 53–71). Oxford: Oxford University Press, Clarendon Press.

    Google Scholar 

  • Duncan, J. (1995). Attention, intelligence, and the frontal lobes. In M. S. Gazzaniga (Ed.),The cognitive neurosciences (pp. 721–733). Cambridge, MA: MIT Press.

    Google Scholar 

  • Duncan, J., Burgess, P., &Emslie, H. (1995). Fluid intelligence after frontal lobe lesions.Neuropsychologia,33, 261–268.

    PubMed  Google Scholar 

  • Duncan, J., Emslie, H., Williams, P., Johnson, R., &Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior.Cognitive Psychology,30, 257–303.

    PubMed  Google Scholar 

  • Duncan, J., Johnson, R., Swales, M., &Freer, C. (1997). Frontal lobe deficits after head injury: Unity and diversity of function.Cognitive Neuropsychology,14, 713–741.

    Google Scholar 

  • Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed,A., Newell, F. N., &Emslie, H. (2000). A neural basis for general intelligence.Science,289, 457–460.

    PubMed  Google Scholar 

  • Dupont, P., Orban, G. A., Vogels, R., Bormans, G., Nuyts, J., Schiepers, C., De Roo, M., &Mortelmans, L. (1993). Different perceptual tasks performed with the same visual stimulus attribute activate different regions of the human brain: A positron emission tomography study.Proceedings of the National Academy of Sciences,90, 10927–10931.

    Google Scholar 

  • Ekstrom, R. B., French, J. W., Harman, M. H., &Dermen, D. (1976).Manual for kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Elfgren, C. I., &Risberg, J. (1998). Lateralized frontal blood flow increases during fluency tasks: Influence of cognitive strategy.Neuropsychologia,36, 505–512.

    PubMed  Google Scholar 

  • Engle, R. W. (1996). Working memory and retrieval: An inhibitionresource approach. In J. T. E. Richardson, R. W. Engle, L. Hasher, R. H. Logie, E. R. Stoltzfus, & R. T. Zacks (Eds.),Working memory and human cognition (pp. 89–119). New York: Oxford University Press.

    Google Scholar 

  • Engle, R. W. (2001). What is working memory capacity? In H. L. Roediger III, J. S. Nairne, I. Neath, & A. M. Surprenant (Eds.),The nature of remembering: Essays in honor of Robert G. Crowder (pp. 297–314). Washington, DC: American Psychological Association.

    Google Scholar 

  • Engle, R. W. (2002). Working memory capacity as executive attention.Current Directions in Psychological Science,11, 19–23.

    Google Scholar 

  • Engle, R. W., Cantor, J., &Carullo, J. J. (1992). Individual differences in working memory and comprehension: A test of four hypotheses.Journal of Experimental Psychology: Learning, Memory, & Cognition,18, 972–992.

    Google Scholar 

  • Engle, R. W., Kane, M. J., &Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.),Models of working memory: Mechanisms of active maintenance and executive control (pp. 102–134). New York: Cambridge University Press.

    Google Scholar 

  • Engle, R. W., Nations, J. K., &Cantor, J. (1990). Is “working memory capacity” just another name for word knowledge?Journal of Educational Psychology,82, 799–804.

    Google Scholar 

  • Engle, R. W., &Oransky, N. (1999). The evolution from short-term to working memory: Multi-store to dynamic models of temporary storage. In R. J. Sternberg (Ed.),The concept of cognition (pp. 515–555). Cambridge, MA: MIT Press.

    Google Scholar 

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., &Conway, A. R. A. (1999). Working memory, short-term memory and general fluid intelligence: A latent variable approach.Journal of Experimental Psychology: General,128, 309–331.

    Google Scholar 

  • Erickson, R. P. (1974). Parallel “population” neural coding in feature extraction. In F. O. Schmitt & F. G. Worden (Eds.),The neurosciences: Third study program (pp. 155–169). Cambridge, MA: MIT Press.

    Google Scholar 

  • Eriksen, B. A., &Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task.Perception & Psychophysics,16, 143–149.

    Google Scholar 

  • Eslinger, P. J., &Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR.Neurology,35, 1731–1741.

    PubMed  Google Scholar 

  • Esposito, G., Kirkby, B. S., Van Horn, J. D., Ellmore, T. M., &Berman, K. F. (1999). Context-dependent, neural system-specif ic neurophysiological concomitants of ageing: Mapping PET correlates during cognitive activation.Brain,122, 963–979.

    PubMed  Google Scholar 

  • Everling, S., &Fischer, B. (1998). The antisaccade: A review of basic research and clinical findings.Neuropsychologia,36, 885–899.

    PubMed  Google Scholar 

  • Ferreira, C. T., Verin, M., Pillon, B., Levy, R., Dubois, B., &Agid,Y. (1998). Spatio-temporal working memory and frontal lesions in man.Cortex,34, 83–98.

    PubMed  Google Scholar 

  • Ferrier, D. (1886).The functions of the brain (2nd ed.). London: Smith, Elder.

    Google Scholar 

  • Fiez, J. A., Raife, E. A., Balota, D. A., Schwarz, J. P., Raichle, M.E., &Peterson, S. E. (1996). A positron emission tomography study of the short-term maintenance of verbal information.Journal of Neuroscience,16, 808–822.

    PubMed  Google Scholar 

  • Fletcher, P. C., Shallice, T., &Dolan, R. J. (1998). The functional roles of prefrontal cortex in episodic memory.Brain,121, 1239–1248.

    PubMed  Google Scholar 

  • Freedman, M., &Cermak, L. S. (1986). Semantic encoding deficits in frontal lobe disease and amnesia.Brain & Cognition,5, 108–114.

    Google Scholar 

  • Freedman, M., &Oscar-Berman, M. (1986). Bilateral frontal lobe disease and selective delayed response deficits in humans.Behavioral Neuroscience,100, 337–342.

    PubMed  Google Scholar 

  • Friedman, H. R., &Goldman-Rakic, P. S. (1988). Activation of the hippocampus and dentate gyrus by working memory: A 2-deoxyglucose study of behaving rhesus monkeys.Journal of Neuroscience,8, 4693–4706.

    PubMed  Google Scholar 

  • Frisk, V., &Milner, B. (1990). The relationship of working memory to the immediate recall of stories following unilateral temporal or frontal lobectomy. Neuropsychologia, 28, 121–135.

    PubMed  Google Scholar 

  • Frith, C. D., Friston, K. J., Liddle, P. F., &Frackowiak, R. S. J. (1991). A PET study of word finding.Neuropsychologia,29, 1137–1148.

    PubMed  Google Scholar 

  • Fukushima, J., Fukushima, K., Miyasaka, K., &Yamashita, I. (1994). Voluntary control of saccadic eye movement in patients with frontal cortical lesions and Parkinsonian patients in comparison with that in schizophrenics.Biological Psychiatry,36, 21–30.

    PubMed  Google Scholar 

  • Funahashi, S., Bruce, C. J., &Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex.Journal of Neurophysiology,61, 331–349.

    PubMed  Google Scholar 

  • Funahashi, S., Bruce, C. J., &Goldman-Rakic, P. S. (1990). Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms.Journal of Neurophysiology,63, 814–831.

    PubMed  Google Scholar 

  • Funahashi, S., Bruce, C. J., &Goldman-Rakic, P. S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas.”Journal of Neuroscience,13, 1479–1497.

    PubMed  Google Scholar 

  • Funahashi, S., &Kubota, K. (1994). Working memory and prefrontal cortex.Neuroscience Research,21, 1–11.

    PubMed  Google Scholar 

  • Fuster, J. M. (1973). Unit activity in prefrontal cortex during delayedresponse performance: Neuronal correlates of transient memory.Journal of Neurophysiology,36, 61–78.

    PubMed  Google Scholar 

  • Fuster, J. M. (1980).The prefrontal cortex. New York: Raven.

    Google Scholar 

  • Fuster, J. M. (1988). The prefrontal cortex:Anatomy, physiology, and neuropsychology of the frontal lobe. New York: Raven.

    Google Scholar 

  • Fuster, J. M. (1989).The prefrontal cortex (2nd ed.). New York: Raven.

    Google Scholar 

  • Fuster, J. M. (1996, July).Emerging solutions to the problem of the frontal lobe. Paper presented at the James S. McDonnell Foundation Summer Institute in Cognitive Neuroscience, Hanover, NH.

  • Fuster, J. M., &Alexander, G. E. (1973). Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior.Brain Research,61, 79–91.

    PubMed  Google Scholar 

  • Fuster, J. M., &Bauer, R. H. (1974). Visual short-term memory deficit from hypothermia of frontal cortex.Brain Research,81, 393–400.

    PubMed  Google Scholar 

  • Fuster, J. M., Bauer, R. H., &Jervey, J. P. (1985). Functional interactions between inferotemporal and prefrontal cortex in a cognitive task.Brain Research,330, 299–307.

    PubMed  Google Scholar 

  • Fuster, J. M., Bodner, M., &Kroger, J. (2000). Cross-modal and cross-temporal association in neurons of frontal cortex.Nature,405, 347–351.

    PubMed  Google Scholar 

  • Goel, V., Buchel, C., Frith, C., &Dolan, R. J. (2000). Dissociation of mechanisms underlying syllogistic reasoning.NeuroImage,12, 504–514.

    PubMed  Google Scholar 

  • Goel, V., Gold, B., Kapur, S., &Houle, S. (1997). The seats of reason? An imaging study of deductive and inductive reasoning.NeuroReport,8, 1305–1310.

    PubMed  Google Scholar 

  • Goel, V., Gold, B., Kapur, S., &Houle, S. (1998). Neuroanatomical correlates of human reasoning.Journal of Cognitive Neuroscience,10, 293–302.

    PubMed  Google Scholar 

  • Gold, J. M., Berman, K. F., Randolph, C., Goldberg, T. E., &Weinberger, D. R. (1996). PET validation of a novel prefrontal task: Delayed response alternation.Neuropsychology,10, 3–10.

    Google Scholar 

  • Goldberg, T. E., Berman, K. F., Fleming, K., Ostrem, J., Van Horn, J. D., Esposito, G., Mattay, V. S., Gold, J. M., &Weinberger, D.R. (1998). Uncoupling cognitive workload and prefrontal cortical physiology: A PET rCBF study.NeuroImage,7, 296–303.

    PubMed  Google Scholar 

  • Goldberg, T. E., Berman, K. F., Randolph, C., Gold, J. M., &Weinberger, D. R. (1996). Isolating the mnemonic component in spatial delayed response: A controlled PET O15-labeled water regional cerebral blood flow study in normal humans.NeuroImage,3, 69–78.

    PubMed  Google Scholar 

  • Goldman, P. S., &Rosvold, H. E. (1970). Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey.Experimental Neurology,27, 291–304.

    PubMed  Google Scholar 

  • Goldman, P. S., Rosvold, H. E., Vest, B., &Galkin, T. W. (1971). Analysis of the delayed-alternation deficit produced by dorsolateral prefrontal lesions in the rhesus monkey.Journal of Comparative & Physiological Psychology,77, 212–220.

    Google Scholar 

  • Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In F. Plum (Ed.),Handbook of physiology: The nervous system (Vol. 5, pp. 373–417). Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Goldman-Rakic, P. S. (1995). Cellular basis of working memory.Neuron,14, 477–485.

    PubMed  Google Scholar 

  • Goldman-Rakic, P. S. (2000). Localization of function all over again.NeuroImage,11, 451–457.

    PubMed  Google Scholar 

  • Goldstein, K. (1936). The significance of the frontal lobes for mental performance.Journal of Neurology & Psychopathology,17, 27–40.

    Google Scholar 

  • Goldstein, K. (1944). The mental changes due to frontal lobe damage.Journal of Psychology,17, 187–208.

    Google Scholar 

  • Gopher, D., Armony, L., &Greenshpan, Y. (2000). Switching tasks and attention policies.Journal of Experimental Psychology: General,129, 308–339.

    Google Scholar 

  • Grady, C. L., McIntosh, A. R., Bookstein, F., Horwitz, B., Rapoport, S. I., &Haxby, J. V. (1998). Age-related changes in regional cerebral blood flow during working memory for faces.NeuroImage,8, 409–425.

    PubMed  Google Scholar 

  • Grafman, J., Jonas, B., &Salazar, A. (1990). Wisconsin Card Sorting Test performance based on location and size of neuroanatomical lesion in Vietnam veterans with penetrating head injury.Perceptual & Motor Skills,71, 1120–1122.

    Google Scholar 

  • Grant, A. D., &Berg, E. A. (1948). A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigltype card-sorting problem.Journal of Experimental Psychology,38, 404–411.

    PubMed  Google Scholar 

  • Grueninger, W. E., &Pribram, K. H. (1969). Effects of spatial and nonspatial distractors on performance latency of monkeys with frontal lesions.Journal of Comparative & Physiological Psychology,68, 203–209.

    Google Scholar 

  • Guitton, D., Buchtel, H. A., &Douglas, R. M. (1985). Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades.Experimental Brain Research,58, 455–472.

    Google Scholar 

  • Halstead, W. C. (1947).Brain and intelligence: A quantitative study of the frontal lobes. Chicago: University of Chicago Press.

    Google Scholar 

  • Harlow, H. F., &Dagnon, J. (1943). Problem solution by monkeys following bilateral removal of the prefrontal areas: I. The discrimination and discrimination-reversal problems.Journal of Experimental Psychology,32, 351–356.

    Google Scholar 

  • Harlow, H. F., Davis, R. T., Settlage, P. H., &Meyer, D. R. (1952). Analysis of frontal and posterior association syndromes in braindamaged monkeys.Journal of Comparative & Physiological Psychology,45, 419–429.

    Google Scholar 

  • Harlow, H. F., &Settlage, P. H. (1948). Effect of extirpation of frontal areas upon learning performance of monkeys.Research Publications for Research in Nervous & Mental Disease,27, 446–459.

    Google Scholar 

  • Harlow, J. M. (1848). Passage of an iron bar through the head.Publications of the Massachusetts Medical Society,2, 327–347.

    Google Scholar 

  • Harper, D. N., &White, K. G. (1997). Retroactive interference and rate of forgetting in delayed matching-to-sample performance.Animal Learning & Behavior,25, 158–164.

    Google Scholar 

  • Hartley, A. A., Speer, N. K., Jonides, J., Reuter-Lorenz, P. A., &Smith, E. E. (2001). Is the dissociability of working memory systems for name identity, visual-object identity, and spatial location maintained in old age?Neuropsychology,15, 3–17.

    PubMed  Google Scholar 

  • Haxby, J. V., Petit, L., Ungerleider, L. G., &Courtney, S. M. (2000). Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory.NeuroImage,11, 98–110.

    Google Scholar 

  • Haxby, J. V., Ungerleider, L. G., Horwitz, B., Rapoport, S. I., &Grady, C. L. (1995). Hemispheric differences in neural systems for face working memory: A PET rCBF study.Human Brain Mapping,3, 68–82.

    Google Scholar 

  • Heaton, R. (1981).A manual for the Wisconsin Card Sorting Test. Odessa, FL: Psychological Assessment Resources.

    Google Scholar 

  • Hebb, D. O. (1939). Intelligence in man after large removals of cerebral tissue: Report of four left frontal lobe cases.Journal of General Psychology,21, 73–87.

    Google Scholar 

  • Hebb, D. O. (1945). Man’s frontal lobes: A critical review.Archives of Neurology & Psychiatry,54, 10–24.

    Google Scholar 

  • Hebb, D. O., &Penfield, W. (1940). Human behavior after extensive bilateral removal from the frontal lobes.Archives of Neurology & Psychiatry,44, 421–438.

    Google Scholar 

  • Honey, G. D., Bullmore, E. T., &Sharma, T. (2000). Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation.NeuroImage,12, 495–503.

    PubMed  Google Scholar 

  • Iidaka, T., Anderson, N. D., Kapur, S., Cabeza, R., &Craik, F. I. M. (2000). The effect of divided attention on encoding and retrieval in episodic memory revealed by Positron Emission Tomography.Journal of Cognitive Neuroscience,12, 267–280.

    PubMed  Google Scholar 

  • Institute for Personality and Ability Testing (1973).Measuring intelligence with culture fair tests. Champaign, IL: Author.

    Google Scholar 

  • Jacobsen, C. F. (1935). Functions of the frontal association area in primates.Archives of Neurology & Psychiatry,33, 558–569.

    Google Scholar 

  • Jacobsen, C. F. (1936). Studies of cerebral function in primates: I. The functions of the frontal association area in monkeys.Comparative Psychology Monographs,13, 1–68.

    Google Scholar 

  • Janowsky, J. S., Shimamura, A. P., Kritchevsky, M., &Squire, L.R. (1989). Cognitive impairment following frontal lobe damage and its relevance to human amnesia.Behavioral Neuroscience,103, 548–560.

    PubMed  Google Scholar 

  • Janowsky, J. S., Shimamura, A. P., &Squire, L. R. (1989). Source memory impairment in patients with frontal lobe lesions.Neuropsychologia,27, 1043–1056.

    PubMed  Google Scholar 

  • Jansma, J. M., Ramsey, N. F., Coppola, R., &Kahn, R. S. (2000). Specific versus nonspecific brain activity in a parametric n-back task.NeuroImage,12, 688–697.

    PubMed  Google Scholar 

  • Jersild, A. T. (1927). Mental set and shift.Archives of Psychology [Whole No. 89].

  • Jetter, W., Poser, U., Freeman, R. B., Jr., &Markowitsch, H. J. (1986). A verbal long term memory deficit in frontal lobe damaged patients.Cortex,22, 229–242.

    PubMed  Google Scholar 

  • Jha, A. P., &McCarthy, G. (2000). The influence of memory load upon delay-interval activity in a working-memory task: An event-related functional MRI study.Journal of Cognitive Neuroscience,12(Suppl.), 90–105.

    PubMed  Google Scholar 

  • Joanette, Y., &Goulet, P. (1986). Criterion-specific reduction of verbal fluency in right brain-damaged right-handers.Neuropsychologia,24, 875–879.

    PubMed  Google Scholar 

  • Johannsen, P., Jakobsen, J., Bruhn, P., Hansen, S. B., Gee, A., Stødkilde-Jørgensen, H., &Gjedde, A. (1997). Cortical sites of sustained and divided attention in normal elderly humans.Neuro-Image,6, 145–155.

    PubMed  Google Scholar 

  • Jones-Gotman, M., &Milner, B. (1977). Design fluency: The invention of nonsense drawings after focal cortical lesions.Neuropsychologia,15, 653–674.

    PubMed  Google Scholar 

  • Jonides, J., Marshuetz, C., Smith, E. E., Reuter-Lorenz, P. A., &Koeppe, R. A. (2000). Age differences in behavior and PET activation reveal differences in interference resolution in verbal working memory.Journal of Cognitive Neuroscience,12, 188–196.

    PubMed  Google Scholar 

  • Jonides, J., Reuter-Lorenz, P. A., Smith, E. E., Awh, E., Barnes, L. L., Drain, M., Glass, J., Lauber, E. J., Patalano, A. L., &Schumacher, E. H. (1996). Verbal and spatial working memory in humans.Psychology of Learning & Motivation,35, 43–88.

    Google Scholar 

  • Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S., &Koeppe, R. A. (1997). Verbal working memory load affects regional brain activation as measured by PET.Journal of Cognitive Neuroscience,9, 462–475.

    Google Scholar 

  • Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., &Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET.Nature,363, 623–625.

    PubMed  Google Scholar 

  • Jonides, J., Smith, E. E., Marshuetz, C., &Koeppe, R. A. (1998). Inhibition in verbal-working memory revealed by brain activation.Proceedings of the National Academy of Sciences,95, 8410–8413.

    Google Scholar 

  • Jurden, F. H. (1995). Individual differences in working memory and complex cognition.Journal of Educational Psychology,87, 93–102.

    Google Scholar 

  • Kahneman, D., Ben-Ishai, R., &Lotan, M. (1973). Relation of a test of attention to road accidents.Journal of Applied Psychology,58, 113–115.

    Google Scholar 

  • Kail, R., &Hall, L. K. (2001). Distinguishing short-term memory from working memory.Memory & Cognition,29, 1–9.

    Google Scholar 

  • Kane, M. J., Bleckley, M. K., Conway, A. R. A., &Engle, R. W. (2001). A controlled-attention view of working-memory capacity.Journal of Experimental Psychology: General,130, 169–183.

    Google Scholar 

  • Kane, M. J., &Engle, R. W. (2000). Working memory capacity, proactive interference, and divided attention: Limits on long-term memory retrieval.Journal of Experimental Psychology: Learning, Memory, & Cognition,26, 333–358.

    Google Scholar 

  • Kane, M. J., & Engle, R. W. (in press). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference.Journal of Experimental Psychology: General.

  • Kane, M. J., Peterman, M., Bleckley, M. K., & Engle, R. W. (2002).The attentional and intellectual demands of verbal and figural fluency: A dual-task approach. Unpublished manuscript.

  • Kane, M. J., Sanchez, A., & Engle, R. W. (1999, November).Working memory capacity, intelligence, and goal neglect in the Stroop task. Poster presented at the annual meeting of the Psychonomic Society, Los Angeles.

  • Kikuchi-Yorioka, Y., &Sawaguchi, T. (2000). Parallel visuospatial and audiospatial working memory processes in the monkey dorsolateral prefrontal cortex.Nature Neuroscience,3, 1075–1076.

    PubMed  Google Scholar 

  • Kimberg, D. Y., Aguirre, G. K., &D’Esposito, M. (2000). Modulation of task-related neural activity in task-switching: An fMRI study.Cognitive Brain Research,10, 189–196.

    PubMed  Google Scholar 

  • Kimberg, D. Y., D’Esposito, M., &Farah, J. (1997). Effects of bromocriptine on human subjects depend on working memory capacity.Cognitive Neuroscience,8, 3581–3585.

    Google Scholar 

  • Kimberg, D. Y., &Farah, M. J. (1993). A unified account of cognitive impairments following frontal lobe damage: The role of working memory in complex, organized behavior.Journal of Experimental Psychology: General,4, 411–428.

    Google Scholar 

  • Kindt, M., Bierman, D., &Brosschot, J. F. (1996). Stroop versus Stroop: Comparison of a card format and a single-trial format of the standard color-word Stroop task and the emotional Stroop task.Personality & Individual Differences,21, 653–661.

    Google Scholar 

  • Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information.Journal of Experimental Psychology,55, 352–358.

    PubMed  Google Scholar 

  • Klein, K., &Fiss, W. H. (1999). The reliability and stability of the Turner and Engle working memory task.Behavior Research Methods, Instruments, & Computers,31, 429–432.

    Google Scholar 

  • Klingberg, T. (1998). Concurrent performance of two working memory tasks: Potential mechanisms of interference.Cerebral Cortex,8, 593–601.

    PubMed  Google Scholar 

  • Knight, R. T. (1991). Evoked potential studies of attention capacity in human frontal lobe lesions. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.),Frontal lobe function and dysfunction (pp. 139–153). Oxford: Oxford University Press.

    Google Scholar 

  • Knight, R. T., &Grabowecky, M. (1995). Escape from linear time: Prefrontal cortex and conscious experience. In M. S. Gazzaniga (Ed.),The cognitive neurosciences (pp. 1357–1371). Cambridge, MA: MIT Press.

    Google Scholar 

  • Knight, R. T., Hillyard, S. A., Woods, D. L., &Neville, S. J. (1981). The effects of frontal cortex lesions on event-related potentials during auditory selective attention.Electroencephalography & Clinical Neurophysiology,52, 571–582.

    Google Scholar 

  • Knight, R. T., Scabini, D., &Woods, D. L. (1989). Prefrontal cortex gating of auditory transmission in humans.Brain Research,504, 338–342.

    PubMed  Google Scholar 

  • Knight, R. T., Staines, W. R., Swick, D., &Chao, L. L. (1999). Prefrontal cortex regulates inhibition and excitation in distributed neural networks.Acta Psychologica,101, 159–178.

    PubMed  Google Scholar 

  • Koch, K. W., &Fuster, J. M. (1989). Unit activity in monkey parietal cortex related to haptic perception and temporary memory.Experimental Brain Research,76, 292–306.

    Google Scholar 

  • Kojima, S., &Goldman-Rakic, P. S. (1982). Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response.Brain Research,248, 43–49.

    PubMed  Google Scholar 

  • Kojima, S., &Goldman-Rakic, P. S. (1984). Functional analysis of spatially discriminative neurons in prefrontal cortex of rhesus monkey.Brain Research,291, 229–240.

    PubMed  Google Scholar 

  • Kubota, K., &Niki, H. (1971). Prefrontal cortical unit activity and delayed alternation performance in monkeys.Journal of Neurophysiology,34, 337–347.

    PubMed  Google Scholar 

  • Kubota, K., Tonoike, M., &Mikami, A. (1980). Neuronal activity in the monkey dorsolateral prefrontal cortex during a discrimination task with delay.Brain Research,183, 29–42.

    PubMed  Google Scholar 

  • Kyllonen, P. C. (1993). Aptitude testing inspired by information processing: A test of the four-sources model.Journal of General Psychology,120, 375–405.

    Google Scholar 

  • Kyllonen, P. C. (1996). Is working memory capacity Spearman’s g? In I. Dennis & P. Tapsfield (Eds.),Human abilities: Their nature and measurement (pp. 49–75). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Kyllonen, P. C., &Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?!Intelligence,14, 389–433.

    Google Scholar 

  • Laiacona, M., De Santis, A., Barbaratto, R., Basso, A., Spagnoli,D., &Capitani, E. (1989). Neuropsychological follow-up of patients operated for aneurysms of anterior communicating artery.Cortex,25, 261–273.

    PubMed  Google Scholar 

  • Larson, G. E., &Perry, Z. A. (1999). Visual capture and human error.Applied Cognitive Psychology,13, 227–236.

    Google Scholar 

  • Larson, G. E., &Saccuzzo, D. P. (1989). Cognitive correlates of general intelligence: Toward a process theory ofg.Intelligence,13, 5–31.

    Google Scholar 

  • Law, D. J., Morrin, K. A., &Pellegrino, J. W. (1995). Training effects and working memory contributions to skill acquisition in a complex coordination task.Learning & Individual Differences,7, 207–234.

    Google Scholar 

  • Lee, S. L., Wild, K., Hollnagel, C., &Grafman, J. (1999). Selective visual attention in patients with frontal lobe lesions or Parkinson’s disease.Neuropsychologia,37, 595–604.

    PubMed  Google Scholar 

  • Lehto, J. (1996). Are executive function tests dependent on working memory capacity?Quarterly Journal of Experimental Psychology,49A, 29–50.

    Google Scholar 

  • Lezak, M. D. (1983). Neuropsychological assessment. New York: Oxford University Press.

    Google Scholar 

  • Los, S. A. (1999). Identifying stimuli of different perceptual categories in pure and mixed blocks of trials: Evidence for stimulus-driven switch costs.Acta Psychologica,103, 173–205.

    PubMed  Google Scholar 

  • Luciana, M., Depue, R. A., Arbisi, P., &Leon, A. (1992). Facilitation of working memory in humans by a D2 dopamine receptor agonist.Journal of Cognitive Neuroscience,4, 58–68.

    Google Scholar 

  • Luria, A. R. (1966). Higher cortical functions in man. New York: Basic Books.

    Google Scholar 

  • Luria, A. R. (1971). Memory disturbances in local brain lesions.Neuropsychologia,9, 367–375.

    PubMed  Google Scholar 

  • Luria, A. R., Karpov, B. A., &Yarbuss, A. L. (1966). Disturbances of active visual perception with lesions of the frontal lobes.Cortex,2, 202–212.

    Google Scholar 

  • Luria, A. R., Pribram, K. H., &Homskaya, E. D. (1964). An experimental analysis of the behavioral disturbance produced by a left frontal arachnoidal endothelioma (meningioma).Neuropsychologia,2, 257–280.

    Google Scholar 

  • MacDonald, A. W., Cohen, J. D., Stenger, V. A., &Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control.Science,288, 1835–1838.

    PubMed  Google Scholar 

  • Mackworth, J. F. (1959). Paced memorizing in a continuous task.Journal of Experimental Psychology,58, 206–211.

    PubMed  Google Scholar 

  • MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review.Psychological Bulletin,109, 163–203.

    PubMed  Google Scholar 

  • MacLeod, C. M., &MacDonald, P. A. (2000). Interdimensional interference in the Stroop effect: Uncovering the cognitive and neural anatomy of attention.Trends in Cognitive Sciences,4, 383–391.

    PubMed  Google Scholar 

  • Malmo, R. B. (1942). Interference factors in delayed response in monkeys after removal of frontal lobes.Journal of Neurophysiology,5, 295–308.

    Google Scholar 

  • Martinkauppi, S., Rämä, P., Aronen, H. J., Korvenoja, A., &Carlson, S. (2000). Working memory of auditory localization.Cerebral Cortex,10, 889–898.

    PubMed  Google Scholar 

  • Mayr, U., &Keele, S. W. (2000). Changing internal constraints on action: The role of backward inhibition.Journal of Experimental Psychology: General,129, 4–26.

    Google Scholar 

  • McCarthy, G. (1995). Functional neuroimaging of memory.The Neuroscientist,1, 155–163.

    Google Scholar 

  • McCarthy, G., Blamire, A. M., Puce, A., Nobre, A. C., Bloch, G., Hyder, F., Goldman-Rakic, P. S., &Shulman, R. G. (1994). Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task.Proceedings of the National Academy of Sciences,91, 8690–8694.

    Google Scholar 

  • McCarthy, G., Puce, A., Constable, R. T., Krystal, J. H., Gore, J. C., &Goldman-Rakic, P. S. (1996). Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI.Cerebral Cortex,6, 600–611.

    PubMed  Google Scholar 

  • McIntosh, A. R., Grady, C. L., Haxby, J. V., Ungerleider, L. G., &Horwitz, B. (1996). Changes in limbic and prefrontal functional interactions in a working memory task for faces.Cerebral Cortex,6, 571–584.

    PubMed  Google Scholar 

  • McKenna, F. P., Duncan, J., &Brown, I. D. (1986). Cognitive abilities and safety on the road: A re-examination of individual differences in dichotic listening and search for embedded figures.Ergonomics,29, 649–663.

    PubMed  Google Scholar 

  • Meiran, N. (1996). Reconfiguration of processing mode prior to task performance.Journal of Experimental Psychology: Learning, Memory, & Cognition,22, 1423–1442.

    Google Scholar 

  • Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect.Annals of Neurology,10, 309–325.

    PubMed  Google Scholar 

  • Metz, J. T., Yasillo, N. J., &Cooper, M. (1987). Relationship between cognitive functioning and cerebral metabolism.Journal of Cerebral Blood Flow & Metabolism,7(Suppl. 1), S305.

    Google Scholar 

  • Miceli, G., Caltagirone, C., Gainotti, G., Masullo, C., &Silveri, M. C. (1981). Neuropsychological correlates of localized cerebral lesions in non-aphasic brain-damaged patients.Journal of Clinical Neuropsychology,3, 53–63.

    PubMed  Google Scholar 

  • Miller, E. (1984). Verbal fluency as a function of a measure of verbal intelligence and in relation to different types of cerebral pathology.British Journal of Clinical Psychology,23, 53–57.

    PubMed  Google Scholar 

  • Miller, E. K. (2000). The prefrontal cortex: No simple matter.Neuro-Image,11, 447–450.

    PubMed  Google Scholar 

  • Miller, E. K., &Cohen, J. D. (2001). An integrative theory of prefrontal cortex function.Annual Review of Neuroscience,24, 167–202.

    PubMed  Google Scholar 

  • Miller, E. K., &Desimone, R. (1994). Parallel neuronal mechanisms for short-term memory.Science,263, 520–522.

    PubMed  Google Scholar 

  • Miller, E. K., Erickson, C. A., &Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque.Journal of Neuroscience,16, 5154–5167.

    PubMed  Google Scholar 

  • Miller, E. K., Li, L., &Desimone, R. (1993). Activity of neurons in anterior inferior temporal cortex during a short-term memory task.Journal of Neuroscience,13, 1460–1478.

    PubMed  Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information.Psychological Review,63, 81–97.

    PubMed  Google Scholar 

  • Milner, B. (1963). Effects of different brain lesions on card sorting.Archives of Neurology,9, 90–100.

    Google Scholar 

  • Milner, B. (1964). Some effects of frontal lobectomy in man. In J. M. Warren & K. Akert (Eds.),The frontal granular cortex and behavior (pp. 313–334). New York: McGraw-Hill.

    Google Scholar 

  • Mishkin, M., &Manning, F. J. (1978). Non-spatial memory after selective prefrontal lesions in monkeys.Brain Research,143, 313–323.

    PubMed  Google Scholar 

  • Mishkin, M., &Pribram, K. H. (1955). Analysis of the effects of frontal lesions in monkey: I. Variations of delayed alternation.Journal of Comparative & Physiological Psychology,48, 492–495.

    Google Scholar 

  • Mishkin, M., &Pribram, K. H. (1956). Analysis of the effects of frontal lesions in monkey: II. Variations of delayed response.Journal of Comparative & Physiological Psychology,49, 36–45.

    Google Scholar 

  • Mishkin, M., Ungerleider, L. G., &Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways.Trends in Neurosciences,6, 414–417.

    Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis.Cognitive Psychology.

  • Moscovitch, M. (1994). Cognitive resources and dual-task interference effects at retrieval in normal people: The role of the frontal lobes and medial temporal cortex.Neuropsychology,8, 524–534.

    Google Scholar 

  • Mountain, M. A., &Snow, W. G. (1993). Wisconsin Card Sorting Test as a measure of frontal pathology: A review.The Clinical Neuropsychologist,7, 108–118.

    Google Scholar 

  • Nagahama, Y., Fukuyama, H., Yamauchi, H., Matsuzaki, S., Konishi, J., Shibasaki, H., &Kimura, J. (1996). Cerebral activation during performance of a card sorting test.Brain,119, 1667–1675.

    PubMed  Google Scholar 

  • Nagahama, Y., Okada, T., Katsumi, Y., Hayashi, T., Yamauchi, H., Sawamoto, N., Toma, K., Nakamura, K., Hanakawa, T., Konishi, J., Fuyukama, H., &Shibasaki, H. (1999). Transient neural activity in the medial superior frontal gyrus and precuneus time locked with attention shift between object features.NeuroImage,10, 193–199.

    PubMed  Google Scholar 

  • Nagahama, Y., Sadato, N., Yamauchi, H., Katsumi, Y., Hayashi, T., Fukuyama, H., Kimura, J., Shibasaki, H., &Yonekura, Y. (1998). Neural activity during attention shifts between object features.Neuro-Report,9, 2633–2638.

    Google Scholar 

  • Nauta, W. J. H. (1964). Some efferent connections of the prefrontal cortex in the monkey. In J. M. Warren & K. Akert (Eds.),The frontal granular cortex and behavior (pp. 397–407). New York: McGraw-Hill.

    Google Scholar 

  • Nauta, W. J. H. (1972). Neural associations of the frontal cortex.Acta Neurobiologiae Experimentalis,32, 125–140.

    PubMed  Google Scholar 

  • Nelson, H. E. (1976). A modified card sorting test sensitive to frontal lobe defects.Cortex,12, 313–324.

    PubMed  Google Scholar 

  • Newcombe, F. (1969).Missile wounds of the brain: A study of psychological deficits. Oxford: Oxford University Press.

    Google Scholar 

  • Niki, H. (1974a). Differential activity of prefrontal units during right and left delayed response.Brain Research,70, 346–349.

    PubMed  Google Scholar 

  • Niki, H. (1974b). Prefrontal unit activity during delayed alternation in the monkey: I. Relation to the direction of response.Brain Research,68, 185–196.

    PubMed  Google Scholar 

  • Niki, H. (1974c). Prefrontal unit activity during delayed alternation in the monkey: II. Relation to absolute versus relative direction of response.Brain Research,68, 197–204.

    PubMed  Google Scholar 

  • Niki, H., &Watanabe, M. (1976). Prefrontal unit activity and delayed response: Relation to cue location versus direction of response.Brain Research,105, 79–88.

    PubMed  Google Scholar 

  • Norman, D. A., &Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.),Consciousness and self-regulation: Advances in research and theory (Vol. 4, pp. 1–18). New York: Plenum.

    Google Scholar 

  • Nyström, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D.C., &Cohen, J. D. (2000). Working memory for letters, shapes, and localizations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex.NeuroImage,11, 424–446.

    PubMed  Google Scholar 

  • O’Reilly, R. C., Braver, T. S., & Cohen, J. D. (1997, July).A biologically-based computational model of working memory. Paper presented at the Models of Working Memory Symposium, Boulder, CO.

  • O’Reilly, R. C., Braver, T. S., &Cohen, J. D. (1999). A biologicallybased computational model of working memory. In A. Miyake & P. Shah (Eds.),Models of working memory: Mechanisms of active maintenance and executive control (pp. 375–411). New York: Cambridge University Press.

    Google Scholar 

  • Oscar-Berman, M. (1975). The effects of dorsolateral-frontal and ventrolateral-frontal lesions on spatial discrimination learning and delayed response in two modalities.Neuropsychologia,13, 237–246.

    PubMed  Google Scholar 

  • Owen, A. M. (1997). The functional organization of working memory processes within human lateral frontal cortex: The contribution of functional neuroimaging.European Journal of Neuroscience,9, 1329–1339.

    PubMed  Google Scholar 

  • Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E., &Robbins, T. W. (1990). Planning and spatial working memory following frontal lobe lesions in man.Neuropsychologia,28, 1021–1034.

    PubMed  Google Scholar 

  • Owen, A. M., Evans, A. C., &Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study.Cerebral Cortex,6, 31–38.

    PubMed  Google Scholar 

  • Owen, A. M., Roberts, A. C., Hodges, J. R., Summers, B. A., Polkey, C. E., &Robbins, T. W. (1993). Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson’s disease.Brain,116, 1159–1175.

    PubMed  Google Scholar 

  • Owen, A. M., Roberts, A. C., Polkey, C. E., Sahakian, B. J., &Robbins, T. W. (1991). Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man.Neuropsychologia,29, 993–1006.

    PubMed  Google Scholar 

  • Pandya, D. N., &Barnes, D. L. (1987). Architecture and connections of the frontal lobe. In E. Perecman (Ed.),The frontal lobes revisited (pp. 41–72). New York: IRBN Press.

    Google Scholar 

  • Pandya, D. N., &Yeterian, E. H. (1990). Prefrontal cortex in relation to other cortical areas in rhesus monkey: Architecture and connections.Progress in Brain Research,85, 63–93.

    PubMed  Google Scholar 

  • Pandya, D. N., &Yeterian, E. H. (1999). Comparison of prefrontal architecture and connections. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.),The prefrontal cortex: Executive and cognitive functions (pp. 51–66). Oxford: Oxford University Press.

    Google Scholar 

  • Parasuraman, R. (1998).The attentive brain. Cambridge, MA: MIT Press.

    Google Scholar 

  • Pardo, J. V., Pardo, P. J., Janer, K. W., &Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm.Proceedings of the National Academy of Sciences,87, 256–259.

    Google Scholar 

  • Parkin, A. J., Bindschaedler, C., Harsent, L., &Metzler, C. (1996). Pathological false alarm rates following damage to the left frontal cortex.Brain & Cognition,32, 14–27.

    Google Scholar 

  • Parkin, A. J., Leng, N. R. C., &Stanhope, N. (1988). Memory impairment following ruptured aneurysm of the anterior communicating artery.Brain & Cognition,7, 231–243.

    Google Scholar 

  • Parks, R. W., Loewenstein, D. A., Dodrill, K. L., Barker, W. W., Yoshii, F., Chang, J. Y., Emran, A., Apicella, A., Sheramata, W.A., &Duara, R. (1988). Cerebral metabolic effects of a verbal fluency test: A PET scan study.Journal of Clinical & Experimental Neuropsychology,10, 565–575.

    Google Scholar 

  • Passingham, R. E. (1975). Delayed matching after selective prefrontal lesions in monkeys.Brain Research,92, 89–102.

    PubMed  Google Scholar 

  • Pati, P., &Dash, A. S. (1990). Interrelationships between incidental memory, non-verbal intelligence and Stroop scores.Psycho-Lingua,20, 27–31.

    Google Scholar 

  • Paus, T., Kalina, M., Patockova, L., Angerova, Y., Cerny, R., Mecir, P., Bauer, J., &Krabec, P. (1991). Medial vs lateral frontal lobe lesions and differential impairment of central-gaze fixation maintenance in man.Brain, 114, 2051–2067.

    PubMed  Google Scholar 

  • Pavlov, I. P. (1941).Conditioned reflexes and psychiatry (Vol. 2; W. H. Gantt, Trans.). New York: International Publishers.

    Google Scholar 

  • Pendleton, M. G., Heaton, R. K., Lehman, R. A., &Hulihan, D. (1982). Diagnostic utility of the Thurstone Word Fluency Test in neuropsychological evaluations.Journal of Clinical Neuropsychology,4, 307–317.

    PubMed  Google Scholar 

  • Pennington, B. F. (1994). The working memory function of the prefrontal cortices. In M. M. Haith, J. B. Bensen, R. J. Roberts, & B. F. Pennington (Eds.),The development of future-oriented processes. Chicago: University of Chicago Press.

    Google Scholar 

  • Perret.E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behavior.Neuropsychologia,12, 323–330.

    PubMed  Google Scholar 

  • Petrides, M. (1985). Deficits on conditional associative-learning tasks after frontal- and temporal-lobe lesions in man.Neuropsychologia,23, 601–614.

    PubMed  Google Scholar 

  • Petrides, M. (1989). Frontal lobes and memory. In F. Boller & J. Grafman (Eds.),Handbook of neuropsychology (Vol. 3, pp. 75–90). Amsterdam: Elsevier.

    Google Scholar 

  • Petrides, M. (1990). Nonspatial conditional learning impaired in patients with unilateral frontal but not unilateral temporal lobe excisions.Neuropsychologia,28, 137–149.

    PubMed  Google Scholar 

  • Petrides, M. (1995). Impairments in non-spatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey.Journal of Neuroscience,15, 359–375.

    PubMed  Google Scholar 

  • Petrides, M., Alivisatos, B., Meyer, E., &Evans, A. C. (1993). Functional activation of the human frontal cortex during the performance of verbal working memory tasks.Proceedings of the National Academy of Sciences,90, 878–882.

    Google Scholar 

  • Petrides, M., &Milner, B. (1982). Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man.Neuropsychologia,20, 249–262.

    PubMed  Google Scholar 

  • Petrides, M., &Pandya, D. N. (1994). Comparative architectonic analysis of the human and macaque frontal cortex. In F. Boller & J. Grafman (Eds.),Handbook of neuropsychology (Vol. 9, pp. 17–58). Amsterdam: Elsevier.

    Google Scholar 

  • Pfefferbaum, A., Desmond, J. E., Galloway, C., Menon, V., Glover, G. H., &Sullivan, E. V. (2001). Reorganization of frontal systems used by alcoholics for spatial working memory: An fMRI study.NeuroImage,14, 7–20.

    PubMed  Google Scholar 

  • Phillips, L. H. (1997). Do “frontal tests” measure executive function? Issues of assessment and evidence from fluency tests. In P. Rabbitt (Ed.),Methodology of frontal and executive function (pp. 191–213). Hove, U.K.: Psychology Press.

    Google Scholar 

  • Phillips, L. H. (1999). Age and individual differences in letter fluency.Developmental Neuropsychology,15, 249–267.

    Google Scholar 

  • Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., &Agid, Y. (1991). Cortical control of reflexive visually-guided saccades.Brain,114, 1473–1485.

    PubMed  Google Scholar 

  • Pohl, W. (1973). Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys.Journal of Comparative & Physiological Psychology,82, 227–239.

    Google Scholar 

  • Pollmann, S. (2001). Switching between dimensions, locations, and responses: The role of left frontopolar cortex.NeuroImage,14, S118-S124.

    PubMed  Google Scholar 

  • Posner, M. I. (1988). Structures and functions of selective attention. In T. Boll & B. Bryant (Eds.),Clinical neuropsychology and brain function: Research, measurement, and practice. Washington, DC: American Psychological Association.

    Google Scholar 

  • Posner, M. I., &Peterson, S. E. (1990). The attention system of the human brain.Annual Review of Neuroscience,13, 25–42.

    PubMed  Google Scholar 

  • Posner, M. I., &Raichle, M. E. (1994).Images of mind. New York: Freeman.

    Google Scholar 

  • Postle, B. R., Berger, J. S., &D’Esposito, M. (1999). Functional neuroanatomical double dissociation of mnemonic and executive control processes contributing to working memory performance.Proceedings of the National Academy of Sciences,96, 12959–12964.

    Google Scholar 

  • Postle, B. R., Berger, J. S., Taich, A. M., &D’Esposito, M. (2000). Activity in human frontal cortex associated with spatial working memory and saccadic behavior.Journal of Cognitive Neuroscience, 12(Suppl.), 2–14.

    PubMed  Google Scholar 

  • Postle, B. R., &D’Esposito, M. (1999). “What”-then-“where” in visual working memory: An event-related fMRI study.Journal of Cognitive Neuroscience,11, 585–597.

    PubMed  Google Scholar 

  • Postle, B. R., &D’Esposito, M. (2000). Evaluating models of the topographical organization of working memory function in frontal cortex with event-related fMRI.Psychobiology,28, 132–145.

    Google Scholar 

  • Postle, B. R., Stern, C. E., Rosen, B. R., &Corkin, S. (2000). An fMRI investigation of cortical contributions to spatial and nonspatial visual working memory.NeuroImage,11, 409–423.

    PubMed  Google Scholar 

  • Prabhakaran, V., Narayanan, K., Zhao, Z., &Gabrieli, J. D. E. (2000). Integration of diverse information in working memory within the frontal lobe.Nature Neuroscience,3, 85–90.

    PubMed  Google Scholar 

  • Prabhakaran, V., Rypma, B., &Gabrieli, J. D. E. (2001). Neural substrates of mathematical reasoning: A functional magnetic resonance imaging study of neocortical activation during performance of the Necessary Arithmetic Operations Test.Neuropsychology,15, 115–127.

    PubMed  Google Scholar 

  • Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H., &Gabrieli, J. D. E. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test.Journal of Cognitive Psychology,33, 43–63.

    Google Scholar 

  • Pribram, K. H., &Mishkin, M. (1956). Analysis of the effects of frontal lesions in monkey: III. Object alternation.Journal of Comparative & Physiological Psychology,49, 41–45.

    Google Scholar 

  • Ptito, A., Crane, J., Leonard, G., Amsel, R., &Caramanos, Z. (1995). Visual-spatial localization by patients with frontal-lobe lesions invading or sparing area 46.NeuroReport,6, 1781–1784.

    PubMed  Google Scholar 

  • Quintana, J., &Fuster, J. M. (1993). Spatial and temporal factors in the role of prefrontal and parietal cortex in visuomotor integration.Cerebral Cortex,3, 122–132.

    PubMed  Google Scholar 

  • Quintana, J., Yajeya, J., &Fuster, J. M. (1988). Prefrontal representation of stimulus attributes during delay tasks: I. Unit activity in cross-temporal integration of sensory and sensory-motor information.Brain Research, 474, 211–222.

    PubMed  Google Scholar 

  • Rafal, R., Gershberg, F., Egly, R., Ivry, R., Kingstone, A., &Ro, T. (1996). Response channel activation and the lateral prefrontal cortex.Neuropsychologia,34, 1197–1202.

    PubMed  Google Scholar 

  • Ragland, J. D., Gur, R. C., Glahn, D. C., Censits, D. M., Smith, R. J., Lazarev, M. G., Alavi, A., &Gur, R. E. (1998). Frontotemporal cerebral blood flow change during executive and declarative memory tasks with schizophrenia: A positron emission tomography study.Neuropsychology,12, 399–413.

    PubMed  Google Scholar 

  • Raichle, M. E. (1994). Images of the mind: Studies with modern imaging techniques.Annual Review of Psychology,45, 333–356.

    PubMed  Google Scholar 

  • Rainer, G., Asaad, W. F., &Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex.Nature,393, 577–579.

    PubMed  Google Scholar 

  • Ramier, A. M., &Hecaen, H. (1970). Role respectif des atteintes frontales et de la lateralisation lesionnelle dans les deficits de la “fluence verbal” [Respective role of frontal injuries and lesion lateralization in “verbal-fluency” deficits].Revue Neurologique,123, 2–22.

    Google Scholar 

  • Rao, S. C., Rainer, G., &Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex.Science,276, 821–824.

    PubMed  Google Scholar 

  • Raz, N., Briggs, S. D., Marks, W., &Acker, J. D. (1999). Age-related deficits in generation and manipulation of mental images: II. The role of dorsolateral prefrontal cortex.Psychology & Aging,14, 436–444.

    Google Scholar 

  • Reitan, R. M., &Wolfson, D. (1994). A selective and critical review of neuropsychological deficits and the frontal lobes.Neuropsychology Review,4, 161–197.

    PubMed  Google Scholar 

  • Richer, F., Decary, A., Lapierre, M. F., Rouleau, I., Bouvier, G., &Saint-Hilaire, J. M. (1993). Target detection deficits in frontal lobectomy.Brain & Cognition,21, 203–211.

    Google Scholar 

  • Risberg, J., &Ingvar, D. H. (1973). Patterns of activation in the grey matter of the dominant hemisphere during memorizing and reasoning.Brain,96, 737–756.

    PubMed  Google Scholar 

  • Risberg, J., Maximilian, A. V., &Prohovnik, I. (1977). Changes of cortical activity patterns during habituation to a reasoning test.Neuropsychologia,15, 793–798.

    PubMed  Google Scholar 

  • Roberts, A. C., Robbins, T. W., &Weiskrantz, L. (1998).The prefrontal cortex: Executive and cognitive functions. Oxford: Oxford University Press.

    Google Scholar 

  • Roberts, R. J., Jr.,Hager, L. D., &Heron, C. (1994). Prefrontal cognitive processes: Working memory and inhibition in the antisaccade task.Journal of Experimental Psychology: General,123, 374–393.

    Google Scholar 

  • Roberts, R. J., Jr., &Pennington, B. F. (1996). An interactive framework for examining prefrontal cognitive processes.Developmental Neuropsychology,12, 105–126.

    Google Scholar 

  • Rogers, R. D., Andrews, T. C., Grasby, P. M., Brooks, D. J., &Robbins, T. W. (2000). Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans.Journal of Cognitive Neuroscience,12, 142–162.

    PubMed  Google Scholar 

  • Rogers, R. D., &Monsell, S. (1995). The cost of a predictable switch between simple cognitive tasks.Journal of Experimental Psychology: General,124, 207–231.

    Google Scholar 

  • Rogers, R. D., Sahakian, B. J., Hodges, J. R., Polkey, C. E., Kennard, C., &Robbins, T. W. (1998). Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson’s disease.Brain,121, 815–842.

    PubMed  Google Scholar 

  • Romo, R., Brody, C. D., Hernández, A., &Lemus, L. (1999). Neuronal correlates of parametric working memory in the prefrontal cortex.Nature,399, 470–473.

    PubMed  Google Scholar 

  • Rosen, V. M., &Engle, R. W. (1997). The role of working memory capacity in retrieval.Journal of Experimental Psychology: General,126, 211–227.

    Google Scholar 

  • Rosen, V. M., &Engle, R. W. (1998). Working memory capacity and suppression.Journal of Memory & Language,39, 418–436.

    Google Scholar 

  • Rosenkilde, C. E. (1979). Functional heterogeneity of the prefrontal cortex in the monkey: A review.Behavioral & Neural Biology,25, 301–345.

    Google Scholar 

  • Rosenkilde, C. E., Bauer, R. H., &Fuster, J. M. (1981). Single cell activity in ventral prefrontal cortex of behaving monkeys.Brain Research,209, 375–394.

    PubMed  Google Scholar 

  • Rosvold, H. E., &Delgado, J. M. R. (1956). The effect on delayed alternation test performance of stimulating or destroying electrically structures within the frontal lobes of the monkey’s brain.Journal of Comparative & Physiological Psychology,49, 365–372.

    Google Scholar 

  • Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S. J., &Passingham, R. E. (2000). The prefrontal cortex: Response selection or maintenance within working memory?Science,288, 1656–1660.

    PubMed  Google Scholar 

  • Rylander, G. (1939).Personality changes after operations on the frontal lobes. Copenhagen: Munksgaard.

    Google Scholar 

  • Rypma, B., &D’Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: Effects of memory load and individual differences.Proceedings of the National Academy of Sciences,96, 6558–6563.

    Google Scholar 

  • Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H., &Gabrieli, J. D. E. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory.NeuroImage,9, 216–226.

    PubMed  Google Scholar 

  • Salmon, D. P., &D’Amato, M. R. (1981). Note on delay-interval illumination effects on retention in monkeys (Cebus apella).Journal of the Experimental Analysis of Behavior,36, 381–385.

    PubMed  Google Scholar 

  • Sarter, M., Bernston, G. G., &Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: Toward strong inference in attributing function to structure.American Psychologist,51, 13–21.

    PubMed  Google Scholar 

  • Schumacher, E. H., Lauber, E., Awh, E., Jonides, J., Smith, E. E., &Koeppe, R. A. (1996). PET evidence for an amodal verbal working memory system.NeuroImage,3, 79–88.

    PubMed  Google Scholar 

  • Seidman, L. J., Breiter, H. C., Goodman, J. M., Goldstein, J. M., Woodruff, P. W. R., O’Craven, K., Savoy, R., Tsuang, M. T., &Rosen, B. R. (1998). A functional magnetic resonance imaging study of auditory vigilance with low and high information processing demands.Neuropsychology,12, 505–518.

    PubMed  Google Scholar 

  • Sergent, J. (1994). Brain-imaging studies of cognitive functions.Trends in Neurosciences,17, 221–227.

    PubMed  Google Scholar 

  • Settlage, P., Zable, M., &Harlow, H. F. (1948). Problem solution by monkeys following bilateral removal of the prefrontal areas: VI. Performance on tests requiring contradictory reactions to similar and to identical stimuli.Journal of Experimental Psychology,38, 50–65.

    PubMed  Google Scholar 

  • Shah, P., &Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach.Journal of Experimental Psychology: General,125, 4–27.

    Google Scholar 

  • Shallice, T. (1988).From neuropsychology to mental structure. Cambridge: Cambridge University Press.

    Google Scholar 

  • Shallice, T., &Burgess, P. W. (1991a). Deficits in strategy application following frontal lobe damage in man.Brain,114, 727–741.

    PubMed  Google Scholar 

  • Shallice, T., &Burgess, P. W. (1991b). Higher-order cognitive impairments and frontal lobe lesions in man. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.),Frontal lobe function and dysfunction (pp. 125–138). Oxford: Oxford University Press.

    Google Scholar 

  • Shimamura, A. P. (2000). The role of the prefrontal cortex in dynamic filtering.Psychobiology,28, 207–218.

    Google Scholar 

  • Shimamura, A. P., Janowsky, J. S., &Squire, L. R. (1990). Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients.Neuropsychologia,28, 803–813.

    PubMed  Google Scholar 

  • Shimamura, A. P., Jurica, P. J., Mangels, J. A., Gershberg, F. B., &Knight, R. T. (1995). Susceptibility to memory interference effects following frontal lobe damage: Findings from tests of paired-associate learning.Journal of Cognitive Neuroscience,7, 144–152.

    Google Scholar 

  • Shindy, W. W., Posley, K. A., &Fuster, J. M. (1994). Reversible deficit in haptic delay tasks from cooling prefrontal cortex.Cerebral Cortex,4, 443–450.

    PubMed  Google Scholar 

  • Simkins-Bullock, J., Brown, G. G., Greiffenstein, M., Malik, G.M., &McGillicuddy, J. (1994). Neuropsychological correlates of shortterm memory distractor tasks among patients with surgical repair of anterior communicating artery aneurysms.Neuropsychology,8, 246–254.

    Google Scholar 

  • Skinner, J. E., &Yingling, C. D. (1977). Central gating mechanisms that regulate event-related potentials and behavior.Progress in Clinical Neurophysiology,1, 30–69.

    Google Scholar 

  • Smith, E. E., &Jonides, J. (1997). Working memory: A view from neuro-imaging.Cognitive Psychology,33, 5–42.

    PubMed  Google Scholar 

  • Smith, E. E., Jonides, J., &Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET.Cerebral Cortex,6, 11–20.

    PubMed  Google Scholar 

  • Smith, E. E., Jonides, J., Koeppe, R. A., Awh, E., Schumacher, E. H., &Minoshima, S. (1995). Spatial versus object working memory: PET investigations.Journal of Cognitive Neuroscience,7, 337–356.

    Google Scholar 

  • Snow, R. E., Kyllonen, P. C., &Marshalek, B. (1984). The topography of ability and learning correlations. In R. J. Sternberg (Ed.),Advances in the psychology of human intelligence (Vol. 2, pp. 47–103). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Stamm, J. S. (1961). Electrical stimulation of frontal cortex in monkeys during learning of an alternation task.Journal of Neurophysiology,24, 414–426.

    Google Scholar 

  • Stamm, J. S., &Rosen, S. C. (1973). The locus and crucial time of implication of prefrontal cortex in the delayed response task. In K. H. Pribram & A. R. Luria (Eds.),Psychophysiology of the frontal lobes (pp. 139–153). New York: Academic Press.

    Google Scholar 

  • Stankov, L., &Crawford, J. D. (1993). Ingredients of complexity in fluid intelligence.Learning & Individual Differences,5, 73–111.

    Google Scholar 

  • Stern, C. E., Owen, A. M., Tracey, I., Look, R. B., Rosen, B. R., &Petrides, M. (2000). Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging.Neuro-Image,11, 392–399.

    PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions.Journal of Experimental Psychology,18, 643–662.

    Google Scholar 

  • Stuss, D. T., &Benson, D. F. (1984). Neuropsychological studies of the frontal lobes.Psychological Bulletin,95, 3–28.

    PubMed  Google Scholar 

  • Stuss, D. T., Floden, D., Alexander, M. P., Levine, B., &Katz, D. (2001). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location.Neuropsychologia,39, 771–786.

    PubMed  Google Scholar 

  • Stuss, D. T., Levine, B., Alexander, M. P., Hong, J., Palumbo, C., Hamer, L., Murphy, K. J., &Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes.Neuropsychologia,38, 388–402.

    PubMed  Google Scholar 

  • Stuss, D. T., Shallice, T., Alexander, M. P., &Picton, T. W. (1995). A multidisciplinary approach to anterior attentional functions. In J. Grafman, K. J. Holyoak, & F. Boller (Eds.),Structure and functions of the human prefrontal cortex. (Annals of the New York Academy of Sciences, Vol. 769, pp. 191–211). New York: New York Academy of Sciences.

    Google Scholar 

  • Süß, H.-M., Oberauer, K., Wittman, W. W., Wilhelm, O., &Schulze, R. (2002). Working-memory capacity explains reasoning ability and a little bit more.Intelligence,30, 261–288.

    Google Scholar 

  • Swartz, B. E., Halgren, E., Fuster, J. M., &Mandelkern, M. (1994). An 18FDG-PET study of cortical activation during a shortterm visual memory task in humans.NeuroReport,5, 925–928.

    PubMed  Google Scholar 

  • Sweeney, J. A., Mintun, M. A., Kwee, S., Wiseman, M. B., Brown, D. L., Rosenberg, D. R., &Carl, J. R. (1996). Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.Journal of Neurophysiology,75, 454–468.

    PubMed  Google Scholar 

  • Taylor, S. F., Kornblum, S., Lauber, E. J., Minoshima, S., &Koeppe, R. A. (1997). Isolation of specific interference processing in the Stroop task: PET activation studies.NeuroImage,6, 81–92.

    PubMed  Google Scholar 

  • Teuber, H. L., Battersby, W. S., &Bender, M. B. (1951). Performance of complex visual tasks after cerebral lesions.Journal of Nervous & Mental Disease,114, 413–429.

    Google Scholar 

  • Teuber, H. L., &Mishkin, M. (1954). Judgment of visual and postural vertical after brain injury.Journal of Psychology,38, 161–175.

    Google Scholar 

  • Teuber, H. L., &Weinstein, S. (1956). Ability to discover hidden figures after cerebral lesions.Archives of Neurology & Psychiatry,76, 369–379.

    Google Scholar 

  • Troyer, A. K., Moscovitch, M., Winocur, G., Alexander, M. P., &Stuss, D. (1998). Clustering and switching on verbal fluency: The effects of focal frontal- and temporal-lobe lesions.Neuropsychologia,36, 499–504.

    PubMed  Google Scholar 

  • Tucha, O., Smely, C., &Lange, K. W. (1999). Verbal and figural fluency in patients with mass lesions of the left or right frontal lobes.Journal of Clinical & Experimental Neuropsychology,21, 229–236.

    Google Scholar 

  • Tuholski, S. W., Engle, R. W., &Baylis, G. C. (2001). Individual differences in working memory capacity and enumeration.Memory & Cognition,29, 484–492.

    Google Scholar 

  • Turner, M. L., &Engle, R. W. (1989). Is working memory capacity task dependent?Journal of Memory & Language,28, 127–154.

    Google Scholar 

  • Uhl, F., Franzen, P., Serles, W., Lange, W., Lindinger, G., &Deecke, L. (1990). Anterior frontal cortex and the effect of proactive interference in paired associate learning: A DC potential study.Journal of Cognitive Neuroscience,2, 373–382.

    Google Scholar 

  • Uhl, F., Podreka, I., &Deecke, L. (1994). Anterior frontal cortex and the effect of proactive interference in word pair learning-Results of Brain-SPECT.Neuropsychologia,32, 241–247.

    PubMed  Google Scholar 

  • Upton, D., &Corcoran, R. (1995). The role of the right temporal lobe in card sorting: A case study.Cortex,31, 405–409.

    PubMed  Google Scholar 

  • Valentine, E. R. (1975). Performance on two reasoning tasks in relation to intelligence, divergence and interference proneness.British Journal of Educational Psychology,45, 198–205.

    Google Scholar 

  • Van der Linden, M., Bruyer, R., Roland, J., &Schils, J. P. (1993). Proactive interference in patients with amnesia resulting from anterior communicating artery aneurysm.Journal of Clinical & Experimental Neuropsychology,15, 525–536.

    Google Scholar 

  • Van der Linden, M., Coyette, F., &Seron, X. (1992). Selective impairment of the “central executive” component of working memory: A single case study.Cognitive Neuropsychology,9, 301–326.

    Google Scholar 

  • van Zomeren, A. H., &Brouwer, W. H. (1994).Clinical neuropsychology of attention. Oxford: Oxford University Press.

    Google Scholar 

  • Vendrell, P., Junque, C., Pujol, J., Jurado, M. A., Molet, J., &Grafman, J. (1995). The role of prefrontal regions in the Stroop task.Neuropsychologia,33, 341–362.

    PubMed  Google Scholar 

  • Verin, M., Partiot, A., Pillon, B., Malapani, C., Agid, Y., &Dubois, B. (1993). Delayed response tasks and prefrontal lesions in man—Evidence for self generated patterns of behaviour with poor environmental modulation.Neuropsychologia,31, 1379–1396.

    PubMed  Google Scholar 

  • Vilkki, J., Holst, P., Ohman, J., Servo, A., &Heiskanen, O. (1992). Cognitive test performances related to early and late computed tomography findings after closed-head injury.Journal of Clinical & Experimental Neuropsychology,14, 518–532.

    Google Scholar 

  • Volpe, B. T., &Hirst, W. (1983). Amnesia following the rupture and repair of an anterior communicating artery aneurysm.Journal of Neurology, Neurosurgery, & Psychiatry,46, 704–709.

    Google Scholar 

  • Walker, R., Husain, M., Hodgson, T. L., Harrison, J., &Kennard, C. (1998). Saccadic eye movements and working memory deficits following damage to human prefrontal cortex.Neuropsychologia,36, 1141–1159.

    PubMed  Google Scholar 

  • Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., de Menezes Santos, M., Thomas, C. R., &Miller, B. L. (1999). A system for relational reasoning in human prefrontal cortex.Psychological Science,10, 119–125.

    Google Scholar 

  • Warkentin, S., Nilsson, A., Risberg, J., &Karlson, S. (1989). Absence of frontal lobe activation in schizophrenia.Journal of Cerebral Blood Flow & Metabolism,9 (Suppl. 1), S354.

    Google Scholar 

  • Warrington, E. K., James, M., &Maciejewski, C. (1986). The WAIS as a lateralizing and localizing diagnostic instrument: A study of 656 patients with unilateral cerebral lesions.Neuropsychologia,24, 223–239.

    PubMed  Google Scholar 

  • Watanabe, T., &Niki, H. (1985). Hippocampal unit activity and delayed response in the monkey.Brain Research,325, 241–254.

    PubMed  Google Scholar 

  • Weigl, E. (1941). On the psychology of so-called processes of abstraction.Journal of Abnormal & Social Psychology,6, 3–33.

    Google Scholar 

  • Weinberger, D. R., Berman, K. F., &Zec, R. F. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia.Archives of General Psychiatry,43, 114–124.

    PubMed  Google Scholar 

  • West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging.Psychological Bulletin,120, 272–292.

    PubMed  Google Scholar 

  • West, R. [L.], &Alain, C. (1999). Event-related neural activity associated with the Stroop task.Cognitive Brain Research,8, 157–174.

    PubMed  Google Scholar 

  • West, R. [L.], &Alain, C. (2000a). Effects of task context and fluctuations of attention on neural activity supporting performance of the Stroop task.Brain Research,873, 102–111.

    PubMed  Google Scholar 

  • West, R. [L.], &Alain, C. (2000b). Evidence for the transient nature of a neural system supporting goal-directed action.Cerebral Cortex,10, 748–752.

    PubMed  Google Scholar 

  • White, I. M., &Wise, S. P. (1999). Rule dependent neuronal activity in the prefrontal cortex.Experimental Brain Research,126, 315–335.

    Google Scholar 

  • Wickens, D. (1970). Encoding categories of words: An empirical approach to memory.Psychological Review,77, 1–15.

    Google Scholar 

  • Wilson, F. A.W., O’Scalaidhe, S. P., &Goldman-Rakic, P. S. (1993). Dissociation of object and spatial processing domains in primate prefrontal cortex.Science,260, 1955–1958.

    PubMed  Google Scholar 

  • Wilson, W. A., Jr. (1962). Alternation in normal and frontal monkeys as a function of response and outcome of the previous trial.Journal of Comparative & Physiological Psychology,55, 701–704.

    Google Scholar 

  • Wise, S. P., Murray, E. A., &Gerfen, C. R. (1996). The frontal cortexbasal ganglia system in primates.Critical Reviews in Neurobiology,10, 317–356.

    PubMed  Google Scholar 

  • Woodrow, H. (1916). The faculty of attention.Journal of Experimental Psychology,1, 285–318.

    Google Scholar 

  • Woods, D. L., &Knight, R. T. (1986). Electrophysiological evidence of increased distractibility after dorsolateral prefrontal lesions.Neurology,36, 212–216.

    PubMed  Google Scholar 

  • Woods, R. P. (1996). Modeling for intergroup comparisons of imaging data.NeuroImage, 4, S84-S94.

    PubMed  Google Scholar 

  • Worsham, R. W., &D’Amato, M. R. (1973). Ambient light, white noise, and monkey vocalization as sources of interference in visual short-term memory of monkeys.Journal of Experimental Psychology,99, 99–105.

    PubMed  Google Scholar 

  • Yacosynski, G. K., &Davies, L. (1945). An experimental study of the frontal lobes in man.Psychosomatic Medicine,7, 97–107.

    Google Scholar 

  • Yamaguchi, S., &Knight, R. T. (1990). Gating of somatosensory inputs by human prefrontal cortex.Brain Research,521, 281–288.

    PubMed  Google Scholar 

  • Yingling, C. D., &Skinner, J. E. (1977). Gating of thalamic input to cerebral cortex by nucleus reticularis thalami. In J. E. Desmedt (Ed.),Progress in clinical neurophysiology (Vol. 1, pp. 70–96). Basel: Karger.

    Google Scholar 

  • Zable, M., &Harlow, H. F. (1946). The performance of rhesus monkeys on series of object-quality and positional discriminations and discrimination reversals.Journal of Comparative Psychology,39, 13–23.

    PubMed  Google Scholar 

  • Zakay, D., &Block, R. A. (1997). Temporal cognition.Current Directions in Psychological Science,6, 12–16.

    Google Scholar 

  • Zatorre, R. J., &McEntee, W. J. (1983). Semantic encoding deficits in a case of traumatic amnesia.Brain & Cognition,2, 331–345.

    Google Scholar 

  • Zola-Morgan, S., &Squire, L. R. (1985). Medial temporal lesions in monkeys impair memory on a variety of tasks sensitive to human amnesia.Behavioral Neuroscience, 99, 22–34.

    PubMed  Google Scholar 

  • Zysset, S., Müller, K., Lohman, G., &von Cramon, D. Y. (2001). Color-word matching Stroop task: Separating interference and response conflict.NeuroImage,13, 29–36.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychology, University of North Carolina at Greensboro, P. O. Box 26164, 27402-6164, Greensboro, NC

    Michael J. Kane

  2. School of Psychology, Georgia Institute of Technology, 30332-0170, Atlanta, GA

    Randall W. Engle

Authors
  1. Michael J. Kane
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Randall W. Engle
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Michael J. Kane or Randall W. Engle.

Additional information

This work was supported by Grants F49620-93-1-0336 and F49620-97-1 from the Air Force Office of Scientific Research and Grant RO1-HD27490-01A1 from the National Institute of Child Health and Human Development. We are indebted to Alan Baddeley, Todd Braver, Andrew Conway, John Duncan, Timothy Salthouse, and Jeffrey Toth for their helpful comments on earlier versions of this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kane, M.J., Engle, R.W. The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review 9, 637–671 (2002). https://doi.org/10.3758/BF03196323

Download citation

  • Received: 16 February 2000

  • Accepted: 15 October 2001

  • Issue Date: December 2002

  • DOI: https://doi.org/10.3758/BF03196323

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Prefrontal Cortex
  • Work Memory Capacity
  • Stroop Task
  • Antisaccade Task
  • Executive Attention
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.236.209.138

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.