Psychonomic Bulletin & Review

, Volume 9, Issue 4, pp 625–636

Six views of embodied cognition

Theoretical and Review Articles

Abstract

The emerging viewpoint of embodied cognition holds that cognitive processes are deeply rooted in the body’s interactions with the world. This position actually houses a number of distinct claims, some of which are more controversial than others. This paper distinguishes and evaluates the following six claims: (1) cognition is situated; (2) cognition is time-pressured; (3) we off-load cognitive work onto the environment; (4) the environment is part of the cognitive system; (5) cognition is for action; (6) offline cognition is body based. Of these, the first three and the fifth appear to be at least partially true, and their usefulness is best evaluated in terms of the range of their applicability. The fourth claim, I argue, is deeply problematic. The sixth claim has received the least attention in the literature on embodied cognition, but it may in fact be the best documented and most powerful of the six claims.

References

  1. Agre, P. E. (1993). The symbolic worldview: Reply to Vera and Simon.Cognitive Science,17, 61–69.CrossRefGoogle Scholar
  2. Baddeley, A. (1986).Working memory. Oxford: Oxford University Press.Google Scholar
  3. Baddeley, A., &Hitch, G. (1974). Working memory. In G. H. Bower (Ed.),The psychology of learning and motivation (Vol. 18, pp. 647–667). Hillsdale, NJ: Erlbaum.Google Scholar
  4. Ballard, D. H. (1996). On the function of visual representation. In K. A. Akins (Ed.),Perception (pp. 111–131). Oxford: Oxford University Press.Google Scholar
  5. Ballard, D. H., Hayhoe, M. M., Pook, P. K., &Rao, R. P. N. (1997). Deictic codes for the embodiment of cognition.Behavioral & Brain Sciences,20, 723–767.Google Scholar
  6. Barsalou, L. W. (1999a). Language comprehension: Archival memory or preparation for situated action?Discourse Processes,28, 61–80.CrossRefGoogle Scholar
  7. Barsalou, L. W. (1999b). Perceptual symbol systems.Behavioral & Brain Sciences,22, 577–660.Google Scholar
  8. Beer, R. D. (1995). A dynamical systems perspective on agent- environment interaction.Artificial Intelligence,72, 173–215.CrossRefGoogle Scholar
  9. Beer, R. D. (2000). Dynamical approaches to cognitive science.Trends in Cognitive Sciences,4, 91–99.PubMedCrossRefGoogle Scholar
  10. Brooks, R. (1986). A robust layered control system for a mobile robot.Journal of Robotics & Automation,2, 14–23.CrossRefGoogle Scholar
  11. Brooks, R. (1991a). Intelligence without representation.Artificial Intelligence Journal,47, 139–160.CrossRefGoogle Scholar
  12. Brooks, R. (1991b). New approaches to robotics.Science,253, 1227–1232.PubMedCrossRefGoogle Scholar
  13. Brooks, R. (1999). Cambrian intelligence:The early history of the new AI. Cambridge, MA: MIT Press.Google Scholar
  14. Chiel, H., &Beer, R. (1997). The brain has a body: Adaptive behavior emerges from interactions of nervous system, body, and environment.Trends in Neurosciences,20, 553–557.PubMedCrossRefGoogle Scholar
  15. Churchland, P. S., Ramachandran, V. S., &Sjenowski, T. J. (1994). A critique of pure vision. In C. Koch & J. L. Davis (Eds.),Large-scale neuronal theories of the brain (pp. 23–60). Cambridge, MA: MIT Press.Google Scholar
  16. Clark, A. (1997).Being there: Putting brain, body, and world together again. Cambridge, MA: MIT Press.Google Scholar
  17. Clark, A. (1998). Embodied, situated, and distributed cognition. In W. Bechtel & G. Graham (Eds.),A companion to cognitive science (pp. 506–517). Malden, MA: Blackwell.Google Scholar
  18. Clark, A., &Grush, R. (1999). Towards a cognitive robotics.Adaptive Behavior,7, 5–16.CrossRefGoogle Scholar
  19. Cohen, N. J., Eichenbaum, H., Deacedo, B. S., &Corkin, S. (1985). Different memory systems underlying acquisition of procedural and declarative knowledge. In D. S. Olton, E. Gamzu, & S. Corkin (Eds.),Memory dysfunctions: An integration of animal and human research from preclinical and clinical perspectives (Annals of the New York Academy of Sciences, Vol. 444, pp. 54–71). New York: New York Academy of Sciences.Google Scholar
  20. Craighero, L., Fadiga, L., Umiltà, C. A., &Rizzolatti, G. (1996). Evidence for visuomotor priming effect.NeuroReport,8, 347–349.PubMedCrossRefGoogle Scholar
  21. Dennett, D. (1995).Darwin’s dangerous idea. New York: Simon & Schuster.Google Scholar
  22. de Waal, F. B. M. (2001).The ape and the sushi master: Cultural reflections by a primatologist. New York: Basic Books.Google Scholar
  23. Epelboim, J. (1997). Deictic codes, embodiment of cognition, and the real world.Behavioral & Brain Sciences,20, 746.CrossRefGoogle Scholar
  24. Farah, M. J. (1995). The neural bases of mental imagery. In M. S. Gazzaniga (Ed.),The cognitive neurosciences (pp. 963–975). Cambridge, MA: MIT Press.Google Scholar
  25. Fodor, J. A. (1983).The modularity of mind. Cambridge, MA: MIT Press.Google Scholar
  26. Franklin, S. (1995).Artificial minds. Cambridge, MA: MIT Press.Google Scholar
  27. Gibbs, R. W., Bogdanovich, J. M., Sykes, J. R., &Barr, D. J. (1997). Metaphor in idiom comprehension.Journal of Memory & Language,37, 141–154.CrossRefGoogle Scholar
  28. Glenberg, A. M. (1997). What memory is for.Behavioral & Brain Sciences,20, 1–55.Google Scholar
  29. Glenberg, A. M., &Robertson, D. A. (1999). Indexical understanding of instructions.Discourse Processes,28, 1–26.CrossRefGoogle Scholar
  30. Glenberg, A. M., &Robertson, D. A. (2000). Symbol grounding and meaning: A comparison of high-dimensional and embodied theories of meaning.Journal of Memory & Language,43, 379–401.CrossRefGoogle Scholar
  31. Goodale, M. A., &Milner, A. D. (1992). Separate visual pathways for perception and action.Trends in Neurosciences,15, 20–25.PubMedCrossRefGoogle Scholar
  32. Goodwin, C. J. (1999).A history of modern psychology. New York: Wiley.Google Scholar
  33. Grafton, S. T., Fadiga, L., Arbib, M. A., &Rizzolatti, G. (1997). Premotor cortex activation during observation and naming of familiar tools.NeuroImage,6, 231–236.PubMedCrossRefGoogle Scholar
  34. Greeno, J. G., &Moore, J. L. (1993). Situativity and symbols: Response to Vera and Simon.Cognitive Science,17, 49–59.CrossRefGoogle Scholar
  35. Grush, R. (1996).Emulation and cognition. Unpublished doctoral dissertation, University of California, San Diego.Google Scholar
  36. Grush, R. (1997). Yet another design for a brain? Review of Port and van Gelder (Eds.),Mind as motion. Philosophical Psychology,10, 233–242.Google Scholar
  37. Grush, R. (1998).Perception, imagery, and the sensorimotor loop. www.pitt.edu/~grush/papers/%21papers.html. English translation of: Wahrnehmung, Vorstellung und die sensomotorische Schleife. In F. Esken & H.-D. Heckmann (Eds.),Bewuβtsein und Repräsentation. Paderborn, Germany: Ferdinand Schöningh.Google Scholar
  38. Hutchins, E. (1995).Cognition in the wild. Cambridge, MA: MIT Press.Google Scholar
  39. Iverson, J. M., &Goldin-Meadow, S. (1998). Why people gesture when they speak.Nature,396, 228.PubMedCrossRefGoogle Scholar
  40. Jeannerod, M. (1997).The cognitive neuroscience of action. Cambridge, MA: Blackwell.Google Scholar
  41. Johnston, W. A., Dark, V. J., &Jacoby, L. L. (1985). Perceptual fluency and recognition judgments.Journal of Experimental Psychology: Learning, Memory, & Cognition,11, 3–11.CrossRefGoogle Scholar
  42. Juarrero, A. (1999).Dynamics in action: Intentional behavior as a complex system. Cambridge, MA: MIT Press.Google Scholar
  43. Kaschak, M. P., &Glenberg, A. M. (2000). Constructing meaning: The role of affordances and grammatical constructions in sentence comprehension.Journal of Memory & Language,43, 508–529.CrossRefGoogle Scholar
  44. Keil, F. C. (1989).Concepts, kinds, and cognitive development. Cambridge, MA: MIT Press.Google Scholar
  45. Kirsh, D., &Maglio, P. (1994). On distinguishing epistemic from pragmatic action.Cognitive Science,18, 513–549.CrossRefGoogle Scholar
  46. Kosslyn, S. M. (1994).Image and brain: The resolution of the imagery debate. Cambridge, MA: MIT Press.Google Scholar
  47. Kosslyn, S. M., Pascual-Leone, A., Felician, O., &Camposano, S. (1999). The role of area 17 in visual imagery: Convergent evidence from PET and rTMS.Science,284, 167–170.PubMedCrossRefGoogle Scholar
  48. Krauss, R. M. (1998). Why do we gesture when we speak?Current Directions in Psychological Science,7, 54–60.CrossRefGoogle Scholar
  49. Lakoff, G., &Johnson, M. (1980).Metaphors we live by. Chicago: University of Chicago Press.Google Scholar
  50. Lakoff, G., &Johnson, M. (1999).Philosophy in the flesh: The embodied mind and its challenge to western thought. New York: Basic Books.Google Scholar
  51. Langacker, R. (1987, 1991).Foundations of cognitive grammar (2 vols.). Stanford: Stanford University Press.Google Scholar
  52. Leakey, R. (1994).The origin of humankind. New York: Basic Books.Google Scholar
  53. Markman, A. B., &Dietrich, E. (2000). In defense of representation.Cognitive Psychology,40, 138–171.PubMedCrossRefGoogle Scholar
  54. Mataric, M. (1991). Navigating with a rat brain: A neurobiologically inspired model for robot spatial representation. In J.-A. Meyer & S. Wilson (Eds.),From animals to animats (pp.169–175). Cambridge, MA: MIT Press.Google Scholar
  55. Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., &Rizzolatti, G. (1997). Object representation in the ventral premotor cortex (area F5) of the monkey.Journal of Neurophysiology,78, 2226–2230.PubMedGoogle Scholar
  56. Ohlsson, S. (1999). Anchoring language in reality: Observations on reference and representation.Discourse Processes,28, 93–105.CrossRefGoogle Scholar
  57. O’Regan, J. K. (1992). Solving the “real” mysteries of visual perception: The world as an outside memory.Canadian Journal of Psychology,46, 461–488.PubMedCrossRefGoogle Scholar
  58. Parsons, L. M., Fox, P. T., Downs, J. H., Glass, T., Hirsch, T. B., Martin, C. C., Jerabek, P. A., &Lancaster, J. L. (1995). Use of implicit motor imagery for visual shape discrimination as revealed by PET.Nature,375, 54–58.PubMedCrossRefGoogle Scholar
  59. Pessoa, L., Thompson, E., &Noë, A. (1998). Finding out about fillingin: A guide to perceptual completion for visual science and the philosophy of perception.Behavioral & Brain Sciences,21, 723–802.Google Scholar
  60. Pfeifer, R., &Scheier, C. (1999).Understanding intelligence. Cambridge, MA: MIT Press.Google Scholar
  61. Port, R. F., &van Gelder, T. (1995).Mind as motion: Explorations in the dynamics of cognition. Cambridge, MA: MIT Press.Google Scholar
  62. Prinz, W. (1987). Ideo-motor action. In H. Heuer & A. F. Sanders (Eds.),Perspectives on perception and action (pp. 47–76). Hillsdale, NJ: Erlbaum.Google Scholar
  63. Putnam, H. (1970). Is semantics possible? In H. E. Kiefer & M. K. Munitz (Eds.),Language, belief and metaphysics (pp.50–63). Albany, NY: State University of New York Press.Google Scholar
  64. Quinn, R., &Espenschied, K. (1993). Control of a hexapod robot using a biologically inspired neural network. In R. Beer, R. Ritzman, & T. McKenna (Eds.),Biological neural networks in invertebrate neuroethology and robotics (pp. 365–381). San Diego: Academic Press.Google Scholar
  65. Reisberg, D. (Ed.) (1992). Auditory imagery. Hillsdale, NJ: Erlbaum.Google Scholar
  66. Rips, L. (1989). Similarity, typicality, and categorization. In S. Vosniadou & A. Ortony (Eds.),Similarity and analogical reasoning (pp. 21–59). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  67. Saito, F., &Fukuda, T. (1994). Two link robot brachiation with connectionist Q-learning. In D. Cliff (Ed.),From animals to animats 3 (pp.309–314). Cambridge, MA: MIT Press.Google Scholar
  68. Schneider, W., &Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention.Psychological Review,84, 1–66.CrossRefGoogle Scholar
  69. Shiffrin, R. M., &Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory.Psychological Review,84, 127–190.CrossRefGoogle Scholar
  70. Simons, D. J., &Levin, D. T. (1997). Change blindness.Trends in Cognitive Sciences,1, 261–267.PubMedCrossRefGoogle Scholar
  71. Slater, C. (1997). Conceptualizing a sunset ≠ using a sunset as a discriminative stimulus.Behavioral & Brain Sciences,20, 37–38.CrossRefGoogle Scholar
  72. Steels, L., &Brooks, R. (1995).The artificial life route to artificial intelligence: Building embodied, situated agents. Hillsdale, NJ: Erlbaum.Google Scholar
  73. Stein, L. (1994). Imagination and situated cognition.Journal of Experimental Theoretical Artificial Intelligence,6, 393–407.CrossRefGoogle Scholar
  74. Talmy, L. (2000).Toward a cognitive semantics: Vol. I. Conceptual structuring systems. Cambridge, MA: MIT Press.Google Scholar
  75. Thelen, E., &Smith, L. B. (1994).A dynamic systems approach to the development of cognition and action. Cambridge, MA: MIT Press.Google Scholar
  76. Tomasello, M. (1998). Cognitive linguistics. In W. Bechtel & G. Graham (Eds.),A companion to cognitive science (pp. 477–487). Malden, MA: Blackwell.Google Scholar
  77. Tucker, M., &Ellis, R. (1998). On the relations between seen objects and components of potential actions.Journal of Experimental Psychology: Human Perception & Performance,24, 830–846.CrossRefGoogle Scholar
  78. Uexküll, J. von (1934). A stroll through the worlds of animals and men. In C. H. Schiller (Ed.),Instinctive behavior: The development of modern concept (pp. 5–80). New York: International Universities Press.Google Scholar
  79. Uleman, J., &Bargh, J. (Eds.) (1989).Unintended thought. New York: Guilford.Google Scholar
  80. van Gelder, T., &Port, R. (1995). It’s about time: An overview of the dynamical approach to cognition. In R. Port & T. van Gelder (Eds.),Mind as motion: Explorations in the dynamics of cognition(pp. 1–43). Cambridge, MA: MIT Press.Google Scholar
  81. Vera, A. H., &Simon, H. A. (1993). Situated action: A symbolic interpretation.Cognitive Science,17, 7–48.CrossRefGoogle Scholar
  82. Wertsch, J. V. (1998). Mediated action. In W. Bechtel & G. Graham (Eds.),A companion to cognitive science (pp. 518–525). Malden, MA: Blackwell.Google Scholar
  83. Wiles, J., &Dartnall, T. (1999).Perspectives on cognitive science: Theories, experiments, and foundations. Stamford, CT: Ablex.Google Scholar
  84. Wilson, M. (2001a). The case for sensorimotor coding in working memory.Psychonomic Bulletin & Review,8, 44–57.CrossRefGoogle Scholar
  85. Wilson, M. (2001b). Perceiving imitatible stimuli: Consequences of isomorphism between input and output.Psychological Bulletin,127, 543–553.PubMedCrossRefGoogle Scholar
  86. Wilson, M., &Emmorey, K. (1997). A visuospatial “phonological loop” in working memory: Evidence from American Sign Language.Memory & Cognition,25, 313–320.CrossRefGoogle Scholar
  87. Wilson, M., &Emmorey, K. (1998). A “word length effect” for sign language: Further evidence for the role of language in structuring working memory.Memory & Cognition,26, 584–590.CrossRefGoogle Scholar
  88. Zwaan, R. A. (1999). Embodied cognition, perceptual symbols, and situation models.Discourse Processes,28, 81–88.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2002

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of CaliforniaSanta Cruz

Personalised recommendations