Abstract
Three methods for fitting the diffusion model (Ratcliff, 1978) to experimental data are examined. Sets of simulated data were generated with known parameter values, and from fits of the model, we found that the maximum likelihood method was better than the chi-square and weighted least squares methods by criteria of bias in the parameters relative to the parameter values used to generate the data and standard deviations in the parameter estimates. The standard deviations in the parameter values can be used as measures of the variability in parameter estimates from fits to experimental data. We introduced contaminant reaction times and variability into the other components of processing besides the decision process and found that the maximum likelihood and chi-square methods failed, sometimes dramatically. But the weighted least squares method was robust to these two factors. We then present results from modifications of the maximum likelihood and chi-square methods, in which these factors are explicitly modeled, and show that the parameter values of the diffusion model are recovered well. We argue that explicit modeling is an important method for addressing contaminants and variability in nondecision processes and that it can be applied in any theoretical approach to modeling reaction time.
References
Audley, R. J., &Pike, A. R. (1965). Some alternative stochastic models of choice.British Journal of Mathematical & Statistical Psychology,18, 207–225.
Balota, D. A., &Spieler, D. H. (1999). Word frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency.Journal of Experimental Psychology: General,128, 32–55.
Busemeyer, J. R., &Townsend, J. T. (1992). Fundamental derivations from decision field theory.Mathematical Social Sciences,23, 255–282.
Busemeyer, J. R., &Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment.Psychological Review,100, 432–459.
Cheng, R. C. H., &Amin, N. A. K. (1981). Maximum likelihood estimation of parameters in the inverse Gaussian distribution, with unknown origin.Technometrics,23, 257–263.
Diederich, A. (1997). Dynamic stochastic models for decision making under time constraints.Journal of Mathematical Psychology,41, 260–274.
Draper, N. R., &Smith, H. (1966).Applied regression analysis. New York: Wiley.
Feller, W. (1968).An introduction to probability theory and its applications. New York: Wiley.
Gill, P. E., Murray, W., Saunders, M. A., &Wright, M. H. (1998).User's guide for NPSOL 5.0: A Fortran package for nonlinear programming (Tech. Rep. SOL 86-1). Stanford: Stanford University, Systems Optimization Laboratory.
Haitovsky, Y. (1989). Grouped data. In S. Kotz & N. L. Johnson (Eds.),Encyclopedia of statistical sciences (pp. 527–536). New York: Wiley.
Heathcote, A., Brown, S., &Mewhort, D. J. K. (2002). Quantile maximum likelihood estimation of response time distributions.Psychonomic Bulletin & Review,9, 394–401.
Jeffreys, H. (1961).Theory of probability (3rd ed.). Oxford: Oxford University Press.
Kendall, M. G., &Stuart, A. (1967).The advanced theory of statistics (Vol. 2, 2nd ed.). London: Charles Griffin & Company.
Kendall, M. G., &Stuart, A. (1977).The advanced theory of statistics (Vol. 1). New York: MacMillan.
LaBerge, D. A. (1962). A recruitment theory of simple behavior.Psychometrika,27, 375–396.
Laming, D. R. J. (1968).Information theory of choice reaction time. New York: Wiley.
Lehmann, E. L. (1983).Theory of point estimation. New York: Wiley.
Lindley, D. V. (1950). Grouping corrections and maximum likelihood equations.Proceedings of the Cambridge Philosophical Society,46, 106–110.
Link, S. W. (1975). The relative judgement theory of two choice response time.Journal of Mathematical Psychology,12, 114–135.
Link, S. W., &Heath, R. A. (1975). A sequential theory of psychological discrimination.Psychometrika,40, 77–105.
Nelder, J. A., &Mead, R. (1965). A simplex method for function minimization.Computer Journal,7, 308–313.
Neyman, J. (1949). Contributions to the theory of the x test. In J. Neyman (Ed.),Proceedings of the first Berkeley symposium on mathematical statistics and probability (pp. 230–273). Berkeley: University of California Press.
Ollman, R. (1966). Fast guesses in choice reaction time.Psychonomic Science,6, 155–156.
Rao, C. R. (1973).Linear statistical inference and its applications (2nd ed.). New York: Wiley.
Ratcliff, R. (1978). A theory of memory retrieval.Psychological Review,85, 59–108.
Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics.Psychological Bulletin,86, 446–461.
Ratcliff, R. (1980). A note on modelling accumulation of information when the rate of accumulation changes over time.Journal of Mathematical Psychology,21, 178–184.
Ratcliff, R. (1981). A theory of order relations in perceptual matching.Psychological Review,88, 552–572.
Ratcliff, R. (1985). Theoretical interpretations of speed and accuracy of positive and negative responses.Psychological Review,92, 212–225.
Ratcliff, R. (1988). Continuous versus discrete information processing: Modeling the accumulation of partial information.Psychological Review,95, 238–255.
Ratcliff, R. (1993). Methods for dealing with reaction time outliers.Psychological Bulletin,114, 510–532.
Ratcliff, R. (2001). Diffusion and random walk processes. InInternational encyclopedia of the social and behavioral sciences (Vol. 6, pp. 3668–3673). Oxford: Elsevier.
Ratcliff, R. (2002). A diffusion model account of response time and accuracy in a brightness discrimination task: Fitting real data and failing to fit fake but plausible data.Psychonomic Bulletin & Review,9, 278–291.
Ratcliff, R., Gomez, P., & McKoon, G. (2002).Diffusion model account of lexical decision. Manuscript submitted for publication.
Ratcliff, R., &Murdock, B. B., Jr. (1976). Retrieval processes in recognition memory.Psychological Review,83, 190–214.
Ratcliff, R., &Rouder, J. F. (1998). Modeling response times for twochoice decisions.Psychological Science,9, 347–356.
Ratcliff, R., &Rouder, J. N. (2000). A diffusion model account of masking in letter identification.Journal of Experimental Psychology: Human Perception & Performance,26, 127–140.
Ratcliff, R., & Smith, P. L. (2002).A comparison of sequential sampling models for two-choice reaction time. Manuscript submitted for publication.
Ratcliff, R., Thapar, A., &McKoon, G. (2001). The effects of aging on reaction time in a signal detection task.Psychology & Aging,16, 323–341.
Ratcliff, R., Van Zandt, T., &McKoon, G. (1999). Connectionist and diffusion models of reaction time.Psychological Review,106, 261–300.
Roe, R. M., Busemeyer, J. R., &Townsend, J. T. (2001). Multialternative decision field theory: A dynamic artificial neural network model of decision-making.Psychological Review,108, 370–392.
Seber, G. A. F., &Wild, C. J. (1989).Nonlinear regression. New York: Wiley.
Silvey, S. D. (1975).Statistical inference. New York: Chapman & Hall.
Smith, P. L. (1990). Obtaining meaningful results from Fourier deconvolution of reaction time.Psychological Bulletin,108, 533–550.
Smith, P. L. (1995). Psychophysically principled models of visual simple reaction time.Psychological Review,102, 567–591.
Smith, P. L., &Van Zandt, T. (2000). Time-dependent Poisson counter models of response latency in simple judgment.British Journal of Mathematical & Statistical Psychology,53, 293–315.
Smith, P. L., &Vickers, D. (1988). The accumulator model of twochoice discrimination.Journal of Mathematical Psychology,32, 135–168.
Stone, M. (1960). Models for choice reaction time.Psychometrika,25, 251–260.
Strayer, D. L., &Kramer, A. F. (1994). Strategies and automaticity: I. Basic findings and conceptual framework.Journal of Experimental Psychology: Learning, Memory, & Cognition,20, 318–341.
Swensson, R. G. (1972). The elusive tradeoff: Speed vs. accuracy in visual discrimination tasks.Perception & Psychophysics,12, 16–32.
Thapar, A., Ratcliff, R., & McKoon, G. (2002).The effects of aging on reaction time in a letter identification task. Manuscript submitted for publication.
Tuerlinckx, F., Maris, E., Ratcliff, R., &De Boeck, P. (2001). A comparison of four methods for simulating the diffusion process.Behavior Research Methods, Instruments, & Computers,33, 443–456.
Ulrich, R., &Miller, J. (1994). Effects of truncation on reaction time analysis.Journal of Experimental Psychology: General,123, 34–80.
Van Zandt, T. (2000). How to fit a response time distribution.Psychonomic Bulletin & Review,7, 424–465.
Van Zandt, T., &Ratcliff, R. (1995). Statistical mimicking of reaction time data: Single-process models, parameter variability, and mixtures.Psychonomic Bulletin & Review,2, 20–54.
Vickers, D. (1970). Evidence for an accumulator model of psychophysical discrimination.Ergonomics,13, 37–58.
Vickers, D. (1979).Decision processes in visual perception. New York: Academic Press.
Vickers, D., Caudrey, D., &Willson, R. J. (1971). Discriminating between the frequency of occurrence of two alternative events.Acta Psychologica,35, 151–172.
Yellott, J. I., Jr. (1971). Correction for guessing and the speed-accuracy tradeoff in choice reaction time.Journal of Mathematical Psychology,8, 159–199.
Author information
Authors and Affiliations
Corresponding author
Additional information
Preparation of this article was supported by NIMH Grant R37-MH44640, NIDCD Grant R01-DC01240, NIA Grant R01-AG17083, and NIMH Grant K05-MH01891.
Rights and permissions
About this article
Cite this article
Ratcliff, R., Tuerlinckx, F. Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review 9, 438–481 (2002). https://doi.org/10.3758/BF03196302
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.3758/BF03196302
Keywords
- Reaction Time
- Diffusion Model
- Maximum Likelihood Method
- Drift Rate
- Error Response