Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Psychonomic Bulletin & Review
  3. Article
Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The Discrete Analogue of the Weibull G Family: Properties, Different Applications, Bayesian and Non-Bayesian Estimation Methods

05 April 2021

Mohamed Ibrahim, M. Masoom Ali & Haitham M. Yousof

Calculation of the expanded uncertainty for large uncertainties using the lognormal distribution

07 September 2020

Alex Williams

Mechanisms for log normal concentration distributions in the environment

12 August 2021

August Andersson

“Reliable organisms from unreliable components” revisited: the linear drift, linear infinitesimal variance model of decision making

31 January 2023

Philip L. Smith

Using Experimental Data and Information Criteria to Guide Model Selection for Reaction–Diffusion Problems in Mathematical Biology

27 February 2019

David J. Warne, Ruth E. Baker & Matthew J. Simpson

A review on reaction–diffusion approximation

13 November 2018

M. Iida, H. Ninomiya & H. Yamamoto

Using Model Selection Criteria to Choose the Number of Principal Components

20 September 2021

Stanley L. Sclove

Parameter Estimation in a Three-Parameter Lognormal Distribution

01 July 2019

V. D. Kozlov & A. I. Maysuradze

Greater Than the Sum of its Parts: Computationally Flexible Bayesian Hierarchical Modeling

09 March 2022

Devin S. Johnson, Brian M. Brost & Mevin B. Hooten

Download PDF
  • Theoretical and Review Articles
  • Published: September 2002

Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability

  • Roger Ratcliff2 &
  • Francis Tuerlinckx1 

Psychonomic Bulletin & Review volume 9, pages 438–481 (2002)Cite this article

  • 4519 Accesses

  • 551 Citations

  • 6 Altmetric

  • Metrics details

Abstract

Three methods for fitting the diffusion model (Ratcliff, 1978) to experimental data are examined. Sets of simulated data were generated with known parameter values, and from fits of the model, we found that the maximum likelihood method was better than the chi-square and weighted least squares methods by criteria of bias in the parameters relative to the parameter values used to generate the data and standard deviations in the parameter estimates. The standard deviations in the parameter values can be used as measures of the variability in parameter estimates from fits to experimental data. We introduced contaminant reaction times and variability into the other components of processing besides the decision process and found that the maximum likelihood and chi-square methods failed, sometimes dramatically. But the weighted least squares method was robust to these two factors. We then present results from modifications of the maximum likelihood and chi-square methods, in which these factors are explicitly modeled, and show that the parameter values of the diffusion model are recovered well. We argue that explicit modeling is an important method for addressing contaminants and variability in nondecision processes and that it can be applied in any theoretical approach to modeling reaction time.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Audley, R. J., &Pike, A. R. (1965). Some alternative stochastic models of choice.British Journal of Mathematical & Statistical Psychology,18, 207–225.

    Google Scholar 

  • Balota, D. A., &Spieler, D. H. (1999). Word frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency.Journal of Experimental Psychology: General,128, 32–55.

    Article  Google Scholar 

  • Busemeyer, J. R., &Townsend, J. T. (1992). Fundamental derivations from decision field theory.Mathematical Social Sciences,23, 255–282.

    Article  Google Scholar 

  • Busemeyer, J. R., &Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment.Psychological Review,100, 432–459.

    Article  PubMed  Google Scholar 

  • Cheng, R. C. H., &Amin, N. A. K. (1981). Maximum likelihood estimation of parameters in the inverse Gaussian distribution, with unknown origin.Technometrics,23, 257–263.

    Article  Google Scholar 

  • Diederich, A. (1997). Dynamic stochastic models for decision making under time constraints.Journal of Mathematical Psychology,41, 260–274.

    Article  PubMed  Google Scholar 

  • Draper, N. R., &Smith, H. (1966).Applied regression analysis. New York: Wiley.

    Google Scholar 

  • Feller, W. (1968).An introduction to probability theory and its applications. New York: Wiley.

    Google Scholar 

  • Gill, P. E., Murray, W., Saunders, M. A., &Wright, M. H. (1998).User's guide for NPSOL 5.0: A Fortran package for nonlinear programming (Tech. Rep. SOL 86-1). Stanford: Stanford University, Systems Optimization Laboratory.

    Google Scholar 

  • Haitovsky, Y. (1989). Grouped data. In S. Kotz & N. L. Johnson (Eds.),Encyclopedia of statistical sciences (pp. 527–536). New York: Wiley.

    Google Scholar 

  • Heathcote, A., Brown, S., &Mewhort, D. J. K. (2002). Quantile maximum likelihood estimation of response time distributions.Psychonomic Bulletin & Review,9, 394–401.

    Article  Google Scholar 

  • Jeffreys, H. (1961).Theory of probability (3rd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Kendall, M. G., &Stuart, A. (1967).The advanced theory of statistics (Vol. 2, 2nd ed.). London: Charles Griffin & Company.

    Google Scholar 

  • Kendall, M. G., &Stuart, A. (1977).The advanced theory of statistics (Vol. 1). New York: MacMillan.

    Google Scholar 

  • LaBerge, D. A. (1962). A recruitment theory of simple behavior.Psychometrika,27, 375–396.

    Article  Google Scholar 

  • Laming, D. R. J. (1968).Information theory of choice reaction time. New York: Wiley.

    Google Scholar 

  • Lehmann, E. L. (1983).Theory of point estimation. New York: Wiley.

    Google Scholar 

  • Lindley, D. V. (1950). Grouping corrections and maximum likelihood equations.Proceedings of the Cambridge Philosophical Society,46, 106–110.

    Article  Google Scholar 

  • Link, S. W. (1975). The relative judgement theory of two choice response time.Journal of Mathematical Psychology,12, 114–135.

    Article  Google Scholar 

  • Link, S. W., &Heath, R. A. (1975). A sequential theory of psychological discrimination.Psychometrika,40, 77–105.

    Article  Google Scholar 

  • Nelder, J. A., &Mead, R. (1965). A simplex method for function minimization.Computer Journal,7, 308–313.

    Google Scholar 

  • Neyman, J. (1949). Contributions to the theory of the x test. In J. Neyman (Ed.),Proceedings of the first Berkeley symposium on mathematical statistics and probability (pp. 230–273). Berkeley: University of California Press.

    Google Scholar 

  • Ollman, R. (1966). Fast guesses in choice reaction time.Psychonomic Science,6, 155–156.

    Google Scholar 

  • Rao, C. R. (1973).Linear statistical inference and its applications (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Ratcliff, R. (1978). A theory of memory retrieval.Psychological Review,85, 59–108.

    Article  Google Scholar 

  • Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics.Psychological Bulletin,86, 446–461.

    Article  PubMed  Google Scholar 

  • Ratcliff, R. (1980). A note on modelling accumulation of information when the rate of accumulation changes over time.Journal of Mathematical Psychology,21, 178–184.

    Article  Google Scholar 

  • Ratcliff, R. (1981). A theory of order relations in perceptual matching.Psychological Review,88, 552–572.

    Article  Google Scholar 

  • Ratcliff, R. (1985). Theoretical interpretations of speed and accuracy of positive and negative responses.Psychological Review,92, 212–225.

    Article  PubMed  Google Scholar 

  • Ratcliff, R. (1988). Continuous versus discrete information processing: Modeling the accumulation of partial information.Psychological Review,95, 238–255.

    Article  PubMed  Google Scholar 

  • Ratcliff, R. (1993). Methods for dealing with reaction time outliers.Psychological Bulletin,114, 510–532.

    Article  PubMed  Google Scholar 

  • Ratcliff, R. (2001). Diffusion and random walk processes. InInternational encyclopedia of the social and behavioral sciences (Vol. 6, pp. 3668–3673). Oxford: Elsevier.

    Google Scholar 

  • Ratcliff, R. (2002). A diffusion model account of response time and accuracy in a brightness discrimination task: Fitting real data and failing to fit fake but plausible data.Psychonomic Bulletin & Review,9, 278–291.

    Article  Google Scholar 

  • Ratcliff, R., Gomez, P., & McKoon, G. (2002).Diffusion model account of lexical decision. Manuscript submitted for publication.

  • Ratcliff, R., &Murdock, B. B., Jr. (1976). Retrieval processes in recognition memory.Psychological Review,83, 190–214.

    Article  Google Scholar 

  • Ratcliff, R., &Rouder, J. F. (1998). Modeling response times for twochoice decisions.Psychological Science,9, 347–356.

    Article  Google Scholar 

  • Ratcliff, R., &Rouder, J. N. (2000). A diffusion model account of masking in letter identification.Journal of Experimental Psychology: Human Perception & Performance,26, 127–140.

    Article  Google Scholar 

  • Ratcliff, R., & Smith, P. L. (2002).A comparison of sequential sampling models for two-choice reaction time. Manuscript submitted for publication.

  • Ratcliff, R., Thapar, A., &McKoon, G. (2001). The effects of aging on reaction time in a signal detection task.Psychology & Aging,16, 323–341.

    Article  Google Scholar 

  • Ratcliff, R., Van Zandt, T., &McKoon, G. (1999). Connectionist and diffusion models of reaction time.Psychological Review,106, 261–300.

    Article  PubMed  Google Scholar 

  • Roe, R. M., Busemeyer, J. R., &Townsend, J. T. (2001). Multialternative decision field theory: A dynamic artificial neural network model of decision-making.Psychological Review,108, 370–392.

    Article  PubMed  Google Scholar 

  • Seber, G. A. F., &Wild, C. J. (1989).Nonlinear regression. New York: Wiley.

    Book  Google Scholar 

  • Silvey, S. D. (1975).Statistical inference. New York: Chapman & Hall.

    Google Scholar 

  • Smith, P. L. (1990). Obtaining meaningful results from Fourier deconvolution of reaction time.Psychological Bulletin,108, 533–550.

    Article  PubMed  Google Scholar 

  • Smith, P. L. (1995). Psychophysically principled models of visual simple reaction time.Psychological Review,102, 567–591.

    Article  Google Scholar 

  • Smith, P. L., &Van Zandt, T. (2000). Time-dependent Poisson counter models of response latency in simple judgment.British Journal of Mathematical & Statistical Psychology,53, 293–315.

    Article  Google Scholar 

  • Smith, P. L., &Vickers, D. (1988). The accumulator model of twochoice discrimination.Journal of Mathematical Psychology,32, 135–168.

    Article  Google Scholar 

  • Stone, M. (1960). Models for choice reaction time.Psychometrika,25, 251–260.

    Article  Google Scholar 

  • Strayer, D. L., &Kramer, A. F. (1994). Strategies and automaticity: I. Basic findings and conceptual framework.Journal of Experimental Psychology: Learning, Memory, & Cognition,20, 318–341.

    Article  Google Scholar 

  • Swensson, R. G. (1972). The elusive tradeoff: Speed vs. accuracy in visual discrimination tasks.Perception & Psychophysics,12, 16–32.

    Article  Google Scholar 

  • Thapar, A., Ratcliff, R., & McKoon, G. (2002).The effects of aging on reaction time in a letter identification task. Manuscript submitted for publication.

  • Tuerlinckx, F., Maris, E., Ratcliff, R., &De Boeck, P. (2001). A comparison of four methods for simulating the diffusion process.Behavior Research Methods, Instruments, & Computers,33, 443–456.

    Article  Google Scholar 

  • Ulrich, R., &Miller, J. (1994). Effects of truncation on reaction time analysis.Journal of Experimental Psychology: General,123, 34–80.

    Article  Google Scholar 

  • Van Zandt, T. (2000). How to fit a response time distribution.Psychonomic Bulletin & Review,7, 424–465.

    Article  Google Scholar 

  • Van Zandt, T., &Ratcliff, R. (1995). Statistical mimicking of reaction time data: Single-process models, parameter variability, and mixtures.Psychonomic Bulletin & Review,2, 20–54.

    Article  Google Scholar 

  • Vickers, D. (1970). Evidence for an accumulator model of psychophysical discrimination.Ergonomics,13, 37–58.

    Article  PubMed  Google Scholar 

  • Vickers, D. (1979).Decision processes in visual perception. New York: Academic Press.

    Google Scholar 

  • Vickers, D., Caudrey, D., &Willson, R. J. (1971). Discriminating between the frequency of occurrence of two alternative events.Acta Psychologica,35, 151–172.

    Article  Google Scholar 

  • Yellott, J. I., Jr. (1971). Correction for guessing and the speed-accuracy tradeoff in choice reaction time.Journal of Mathematical Psychology,8, 159–199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Leuven, Leuven, Belgium

    Francis Tuerlinckx

  2. Department of Psychology, Northwestern University, 60208, Evanston, IL

    Roger Ratcliff

Authors
  1. Roger Ratcliff
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Francis Tuerlinckx
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Roger Ratcliff.

Additional information

Preparation of this article was supported by NIMH Grant R37-MH44640, NIDCD Grant R01-DC01240, NIA Grant R01-AG17083, and NIMH Grant K05-MH01891.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ratcliff, R., Tuerlinckx, F. Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review 9, 438–481 (2002). https://doi.org/10.3758/BF03196302

Download citation

  • Received: 01 November 2000

  • Accepted: 27 August 2001

  • Issue Date: September 2002

  • DOI: https://doi.org/10.3758/BF03196302

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Reaction Time
  • Diffusion Model
  • Maximum Likelihood Method
  • Drift Rate
  • Error Response
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 34.232.62.64

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.