Richer color experience in observers with multiple photopigment opsin genes

Abstract

Traditional color vision theory posits that three types of retinal photopigments transduce light into a trivariate neural color code, thereby explaining color-matching behaviors. Thisprinciple of trichromacy is in need of reexamination in view of molecular genetics results suggesting that a substantial percentage of women possess more than three classes of retinal photopigments. At issue is the question of whether four-photopigment retinas necessarily yield trichromatic color perception. In the present paper, we review results and theory underlying the accepted photoreceptor-based model of trichromacy. A review of the psychological literature shows that gender-linked differences in color perception warrant further investigation of retinal photopigment classes and color perception relations. We use genetic analyses to examine an important position in the gene sequence, and we empirically assess and compare the color perception of individuals possessing more than three retinal photopigment genes with those possessing fewer retinal photopigment genes. Women with four-photopigment genotypes are found to perceive significantly more chromatic appearances in comparison with either male or female trichromat controls. We provide a rationale for this previously undetected finding and discuss implications for theories of color perception and gender differences in color behavior.

References

  1. Almirall, H., &Gutierrez, E. (1987). Auditory and visual reaction time in adults during long performance.Perceptual & Motor Skills,65, 543–552.

    Google Scholar 

  2. Anyan, W.R., Jr., &Quillian, W. W., II (1971). The naming of primary colors by children.Child Development,42, 1629–1632.

    Article  Google Scholar 

  3. Asenjo, A. B., Rim, J., &Oprian, D. D. (1994). Molecular determinants of human red /green color discrimination.Neuron,12, 1131–1138.

    Article  PubMed  Google Scholar 

  4. Blough, P. M., &Slavin, L. K. (1987). Reaction time assessments of gender differences in visual-spatial performance.Perception & Psychophysics,41, 276–281.

    Google Scholar 

  5. Boker, S. (1997). A measurement of the adaptation of color vision to the spectral environment.Psychological Science,8, 130–143.

    Article  Google Scholar 

  6. Boring, E. G. (1942).Sensation and perception in the history of experimental psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  7. Boynton, R. M., Schafer, W. & Neun, M. E. (1964). Hue-wavelength relation measured by color-naming method for three retinal locations.Science,146, 666–668.

    Article  PubMed  Google Scholar 

  8. Brabyn, L. B., &McGuinness, D. (1979). Gender differences in response to spatial frequency and stimulus orientation.Perception & Psychophysics,26, 319–324.

    Google Scholar 

  9. Brindley, G. S. (1960).Physiology of the retina and the visual pathway. London: Edward Arnold.

    Google Scholar 

  10. Buckalew, L. W., &Buckalew, N. M. (1989). Note on color preference and color vision test performance.Perception & Motor Skills,69, 1039–1042.

    Google Scholar 

  11. Campbell, F. W. (1986). In search of the spectrum’s elusive yellow.Ophthalmic Physiological Optics,6, 129–133.

    Article  Google Scholar 

  12. Cohn, S. A., Emmerich, D. S., &Carlson, E. A. (1989). Differences in the responses of heterozygous carriers of color blindness and normal controls to briefly presented stimuli.Vision Research,29, 255–262.

    Article  PubMed  Google Scholar 

  13. Crone, R. A. (1959). Spectral sensitivity in color-defective subjects and heterozygous carriers.American Journal of Ophthalmology,48, 231–238.

    PubMed  Google Scholar 

  14. Dartnall, H. J. A., Bowmaker, J. K., &Mollon, J. D. (1983). Human visual pigments: Microspectrophotometric results from the eyes of seven persons.Proceedings of the Royal Society of London: Series B,220, 115–13.

    Article  Google Scholar 

  15. Deeb, S. S., &Motulsky, A. G. (1996). Molecular genetics of human color vision.Behavioral Genetics,26, 195–206.

    Article  Google Scholar 

  16. DeMarco, P., Pokorny, J., &Smith, V. C. (1992). Full spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats.Journal of the Optical Society of America A,9, 1465–1476.

    Article  Google Scholar 

  17. DeVries, H. L. (1948). The luminosity curve of the eye as determined by the measurements with the flickerphotometer.Physica,XIV, 367–380.

    Article  Google Scholar 

  18. Dimmick, F. L., &Hubbard, M. R. (1939). The spectral location of psychologically unique yellow, green and blue.American Journal of Psychology,52, 242–251.

    Article  Google Scholar 

  19. Feig, K., &Ropers, H. (1978). On the incidence of unilateral and bilateral colour blindness in heterozygous females.Journal of Human Genetics,41, 313–323.

    Article  Google Scholar 

  20. Furbee, L. N., Maynard, K., Smith, J., Benfer, B. A., Jr.,Quick, S., &Ross, L. (1997). The emergence of color cognition from color perception.Journal of Linguistic Anthropology,6, 223–240.

    Article  Google Scholar 

  21. Hardin, C. L., &Maffi, L. (Eds.) (1997).Color categories in thought and language. Cambridge: Cambridge University Press.

    Google Scholar 

  22. He, J. C., &Shevell, S. K. (1995). Variation in color matching and discrimination among deuteranomalous trichromats: Theoretical implications of small differences in photopigments.Vision Research,35, 2579–2588.

    Article  PubMed  Google Scholar 

  23. Hecht, S., &Shlaer, S. (1936). The color vision of dichromats.Journal of General Physiology,20, 57–93.

    Article  PubMed  Google Scholar 

  24. Hsia, Y. &Graham, C. H. (1957). Spectral luminosity curves for protanopic, deuteranopic and normal subjects.Proceedings of the National Academy of Science,43, 1011–1019.

    Article  Google Scholar 

  25. Jacobs, G. H. (1998). Photopigments and seeing—Lessons from natural experiments.Investigative Ophthalmology & Visual Science,39, 2205–2216.

    Google Scholar 

  26. Jameson, D., &Hurvich, L. M. (1956). Theoretical analysis of anomalous trichromatic color vision.Journal of the Optical Society of America,46, 1075–1089.

    Article  PubMed  Google Scholar 

  27. Jordan, G., &Mollon, J. D. (1993). A study of women heterozygous for color deficiencies.Vision Research,33, 1495–1508.

    Article  PubMed  Google Scholar 

  28. Judd, D. B. (1945). Standard response functions for protanopic and deuteranopic vision.Journal of the Optical Society of America,35, 199–221.

    Article  Google Scholar 

  29. Kraft, T. W., Neitz, J., &Neitz, M. (1998). Spectra of human cones.Vision Research,38, 3663–3670.

    Article  PubMed  Google Scholar 

  30. Krill, A. E., &Beutler, E. (1964). The red-light absolute threshold in heterozygote protan carriers.Investigative Ophthalmology,3, 107–118.

    PubMed  Google Scholar 

  31. Krill, A. E., &Beutler, E. (1965). Red light thresholds in heterozygote carriers of protanopia: Genetic implications.Science,149, 186–188.

    Article  PubMed  Google Scholar 

  32. Lakoff, R. T. (1975).Language and woman’s place. San Francisco: Harper & Row.

    Google Scholar 

  33. Lyon, M. F. (1961). Gene action in the X chromosome of the mouse(Mus musculus L.).Nature,190, 372–373.

    Article  PubMed  Google Scholar 

  34. MacLeod, D. I. A. (1985). Receptoral constraints on colour appearance. In D. Ottoson & S. Zeki (Eds.),Central and peripheral mechanisms of colour vision (pp. 103–116). London: Macmillian.

    Google Scholar 

  35. MacLeod, D. I. A., & von der Twer, T. (2000).The pleistochrome: Optimal opponent codes for natural colors. Manuscript submitted for publication.

  36. Maloney, L. T. (1992). Color constancy and color perception: The linear models framework. In D. E. Meyer & S. Kornblum (Eds.),Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (pp. 59–78). Cambridge, MA: MIT Press.

    Google Scholar 

  37. Mausfeld, R. (1998). Color perception: From Grassman codes to a dual code for object and illumination colors. In W. G. K. Backhaus, R. Kliegl, & J. S. Werner (Eds.),Color vision: Perspectives from different disciplines (pp. 219–250). New York: Walter de Gruyter.

    Google Scholar 

  38. Mausfeld, R., &Niederée, R. (1993). Inquiries into relational concepts of colour based on an incremental principle of colour coding for minimal relational stimuli.Perception,22, 427–462.

    Article  PubMed  Google Scholar 

  39. McGuinness, D. (1976). Away from a unisex psychology: Individual differences in visual sensory and perceptual processes.Perception,5, 279–294.

    Article  PubMed  Google Scholar 

  40. McGuinness, D., &Lewis, I. (1976). Sex differences in visual persistence: Experiments on the Ganzfeld and afterimages.Perception,5, 295–301.

    Article  PubMed  Google Scholar 

  41. Menzel, R. (1985). Colour pathways and colour vision in the honeybee. In D. Ottoson & S. Zeki (Eds.),Central and peripheral mechanisms of colour vision (Proceedings of an International Symposium at the Wenner-Gren Center, Vol. 43, pp. 211–233). London: Macmillan.

    Google Scholar 

  42. Merbs, S. L., &Nathans, J. (1992a). Absorption spectra of human cone pigments.Nature,356, 433–435.

    Article  PubMed  Google Scholar 

  43. Merbs, S. L., &Nathans, J. (1992b). Absorption spectra of hybrid pigments responsible for anomalous color vision.Science,258, 464–466.

    Article  Google Scholar 

  44. Merbs, S. L., &Nathans, J. (1993). Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments.Photochemical Photobiology,58, 706–710.

    Article  Google Scholar 

  45. Miller, S. A., Dykes, D. D., &Polesky, H. F. (1998). A simple salting out procedure for extracting DNA from human nucleated cells.Nucleic Acids Research,16, 1215.

    Article  Google Scholar 

  46. Miyahara, E., Pokorny, J., Smith, V. C., Baron, R., &Baron, E. (1998). Color vision in two observers with highly biased LWS/MWS cone ratios.Vision Research,38, 601–612.

    Article  PubMed  Google Scholar 

  47. Mollon, J. D. (1992). Worlds of difference.Nature,356, 378–379.

    Article  PubMed  Google Scholar 

  48. Mollon, J. D. (1995). Seeing colour. In T. Lamb & J. Bourriau (Eds.),Colour, art & science (pp. 127–150). Cambridge: Cambridge University Press.

    Google Scholar 

  49. Nagy, A. L., MacLeod, D. I. A., Heyneman, N. E., &Eiser, A. (1981). Four cone pigments in women heterozygous for color deficiency.Journal of the Optical Society of America,71, 719–722.

    Article  PubMed  Google Scholar 

  50. Nathans, J. (1997). The genes for color vision. In A. Byrne & D. R. Hilbert (Eds.),Readings on Color, Vol. 2: The science of color (pp. 249–258). Cambridge, MA: MIT Press.

    Google Scholar 

  51. Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B., &Hogness, D. S. (1986). Molecular genetics of inherited variation in human color vision.Science,232, 203–210.

    Article  PubMed  Google Scholar 

  52. Nathans, J., Thomas, D., &Hogness, D. S. (1986). Molecular genetics of human color vision: The genes encoding blue, green, and red pigments.Science,232, 193–202.

    Article  PubMed  Google Scholar 

  53. Neitz, J., &Jacobs, G. H. (1986). Polymorphism of the long-wavelength cone in normal human color vision.Nature,323, 623–625.

    Article  PubMed  Google Scholar 

  54. Neitz, J., &Neitz, M. (1994). Colour vision defects. In A. S. Wright & B. Jay (Eds.),Molecular genetics of inherited eye disorders (pp. 217–257). Chur: Harwood.

    Google Scholar 

  55. Neitz, J., Neitz, M., &Jacobs, G. H. (1993). More than three different cone pigments among people with normal color vision.Vision Research,33, 117–122.

    Article  PubMed  Google Scholar 

  56. Neitz, M., Kraft, T. W., &Neitz, J. (1998). Expression of L-cone pigment gene subtypes in females.Vision Research,38, 3221–3225.

    Article  PubMed  Google Scholar 

  57. Neitz, M., &Neitz, J. (1998). Molecular genetics and the biological basis of color vision. In W. G. K. Backhaus, R. Kliegl, & J. S. Werner (Eds.),Color Vision: Perspectives from different disciplines (pp. 101–119). New York: Walter de Gruyter.

    Google Scholar 

  58. Neitz, M., Neitz, J., &Jacobs, G. H. (1995). Genetic basis of photopigment variations in human dichromats.Vision Research,35, 2095–2130.

    Article  PubMed  Google Scholar 

  59. Nerger, J. L. (1988).The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea and parafovea. Unpublished doctoral dissertation, University of California at San Diego, La Jolla.

    Google Scholar 

  60. Nowaczyk, R. H. (1982). Sex-related differences in the color lexicon.Language & Speech,25, 257–265.

    Google Scholar 

  61. Piantanida, T. P. (1976). Polymorphism of human color vision.American Journal of Optometry & Physiological Optics,53, 647–657.

    Google Scholar 

  62. Pickford, R. W. (1959). Some heterozygous manifestations of colourblindness.British Journal of Physiological Optics,16, 83–95.

    PubMed  Google Scholar 

  63. Pokorny, J., &Smith, V. C. (1977). Evaluation of a single pigment shift model of anomalous trichromacy.Journal of the Optical Society of America,67, 1196–1209.

    Article  PubMed  Google Scholar 

  64. Pokorny, J., &Smith, V. C. (1982). New observations concerning redgreen colour defects.Colour Research & Application,7, 159–164.

    Article  Google Scholar 

  65. Poynter, D. (1988). Variability in brightness matching of colored lights.Human Factors,30, 143–151.

    PubMed  Google Scholar 

  66. Purdy, D. (1931). Spectral hue as a function of intensity.American Journal of Psychology,43, 541–559.

    Article  Google Scholar 

  67. Regan, B. C., Reffin, J. P., &Mollon, J. D. (1994). Luminance noise and the rapid determination of discrimination ellipses in colour deficiency.Vision Research,34, 1279–1299.

    Article  PubMed  Google Scholar 

  68. Rich, E. (1977). Sex-related difference in color vocabulary.Language & Speech,20, 404–409.

    Google Scholar 

  69. Roorda, A., &Williams, D. R. (1999). The arrangement of the three cone classes in the living human eye.Nature,397, 520–522.

    Article  PubMed  Google Scholar 

  70. Saito, M. (1994). A cross-cultural study on color preference in three Asian cities: Comparison between Tokyo, Taipei and Tianjin.Japanese Psychological Research,36, 219–232.

    Google Scholar 

  71. Saito, M. (1996). A comparative study of color preferences in Japan, China and Indonesia with emphasis on the preference for white.Perceptual & Motor Skills,83, 115–128.

    Google Scholar 

  72. Saito, M. (1999). Blue and seven phenomena among Japanese students.Perceptual & Motor Skills,89, 532–536.

    Article  Google Scholar 

  73. Schmidt, I. (1955). A sign of manifest heterozygosity in carriers of color deficiency.American Journal of Optometry,32, 404–408.

    Google Scholar 

  74. Shapiro, A. E. (1984).The optical papers of Isaac Newton: Vol. 1. The optical lectures 1670–1672 (pp. 539–554). Cambridge: Cambridge University Press.

    Google Scholar 

  75. Sharpe, L. T., Stockman, A., Jaegle, H., Knau, H., Klausen, G., Reitner, A, &Nathans, J. (1998). Red, green and red-green hybrid pigments in the human retina: Correlations between deduced protein sequences and psychophysically measured spectral sensitivities.Journal of Neuroscience,18, 10053–10069.

    PubMed  Google Scholar 

  76. Sharpe, L. T., Stockman, A., Knau, H., &Jaegle, H. (1998). Macular pigment densities derived from central and peripheral spectral sensitivity differences.Vision Research,38, 3233–3239.

    Article  PubMed  Google Scholar 

  77. Sjoberg, S. A., Neitz, M., Balding, S. D., &Neitz, J. (1998). L-cone pigment genes expressed in normal colour vision.Vision Research,38, 3213–3219.

    Article  PubMed  Google Scholar 

  78. Smeulders, N., Campbell, F. W., &Andrews, P. R. (1994). The role of delineation and spatial frequency in the perception of the colors of the spectrum.Vision Research,34, 927–936.

    Article  PubMed  Google Scholar 

  79. Stockman, A., &Sharpe, L. T. (1998). Human cone spectral sensitivities: A progress report.Vision Research,38, 3193–3206.

    Article  PubMed  Google Scholar 

  80. Stoerig, P. (1998). Wavelength information processing versus color perception: Evidence from blindsight and color-blind sight. In W. G. K. Backhaus, R. Kliegl, & J. S. Werner (Eds.),Color vision: Perspectives from different disciplines (pp. 131–147). New York: Walter de Gruyter.

    Google Scholar 

  81. Swaringen, S., Layman, S., &Wilson, A. (1978). Sex differences in color naming.Perceptual & Motor Skills,47, 440–442.

    Google Scholar 

  82. Thomas, L. L., Curtis, A. J., &Bolton, R. (1978). Sex differences in elicited color lexicon size.Perceptual & Motor Skills,47, 77–78.

    Google Scholar 

  83. Thomson, L. C. (1954). Sensations aroused by monochromatic stimuli and their prediction.Optical Acta,1, 93–102.

    Google Scholar 

  84. Troscianko, T., Davidoff, J., Humphreys, G., Landis, T., Fahle, M., Greenlee, M., Brugger, P., &Phillips, W. (1996). Human colour discrimination based on a non-parvocellular pathway.Current Biology,6, 200–210.

    Article  PubMed  Google Scholar 

  85. Wilder, D. G. (1970).The photopic spectral sensitivity of color normal, protanopic and deuteronopic observers. Unpublished doctoral dissertation, University of California, Los Angeles.

    Google Scholar 

  86. Winderickx, J., Battisti, L., Hibiya, Y., Motulsky, A. G., &Deeb, S. S. (1993). Haplotype diversity in the human red and green opsin genes: Evidence for frequent sequence exchange in exon 3.Human Molecular Genetics Polymorphism,2, 1413–1421.

    Article  Google Scholar 

  87. Winderickx, J., Lindsey, D. T., Sanocki, E., Teller, D. Y., Motulsky, A.G., &Deeb, S. S. (1992). Polymorphism in red photopigment underlies variation in color matching.Nature,356, 431–433.

    Article  PubMed  Google Scholar 

  88. Wyszecki, G., &Stiles, W. S. (1982).Color science: Concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

    Google Scholar 

  89. Yasuma, T., Tokuda, H., &Ichikawa, H. (1984). Abnormalities of cone photopigments in genetic carriers of protanomaly.Archives of Ophthalmology,102, 897–900.

    PubMed  Google Scholar 

  90. Zegura, S. L. (1997). Genes, opsins, neurons, and color categories: Closing the gaps. In C. L. Hardin & L. Maffi (Eds.),Color categories in thought and language (pp. 283–292). Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kimberly A. Jameson.

Additional information

Portions of this research were presented at the 1998 European Conference on Visual Perception, the 1998 meeting of the Optical Society of America, and the 1998 meeting of the Psychonomic Society. Partial support was provided by the National Science Foundation (Grant NSF-9973903 to K.A.J.) and a UCSD Hellman Faculty Award (to K.A.J.).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jameson, K.A., Highnote, S.M. & Wasserman, L.M. Richer color experience in observers with multiple photopigment opsin genes. Psychonomic Bulletin & Review 8, 244–261 (2001). https://doi.org/10.3758/BF03196159

Download citation

Keywords

  • Color Vision
  • Color Perception
  • Opsin Gene
  • Spectral Location
  • Pigment Gene