Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Psychonomic Bulletin & Review
  3. Article

Richer color experience in observers with multiple photopigment opsin genes

  • Published: June 2001
  • Volume 8, pages 244–261, (2001)
  • Cite this article
Download PDF
Psychonomic Bulletin & Review Aims and scope Submit manuscript
Richer color experience in observers with multiple photopigment opsin genes
Download PDF
  • Kimberly A. Jameson1,
  • Susan M. Highnote1 &
  • Linda M. Wasserman2 
  • 11k Accesses

  • 137 Citations

  • 79 Altmetric

  • 9 Mentions

  • Explore all metrics

Abstract

Traditional color vision theory posits that three types of retinal photopigments transduce light into a trivariate neural color code, thereby explaining color-matching behaviors. Thisprinciple of trichromacy is in need of reexamination in view of molecular genetics results suggesting that a substantial percentage of women possess more than three classes of retinal photopigments. At issue is the question of whether four-photopigment retinas necessarily yield trichromatic color perception. In the present paper, we review results and theory underlying the accepted photoreceptor-based model of trichromacy. A review of the psychological literature shows that gender-linked differences in color perception warrant further investigation of retinal photopigment classes and color perception relations. We use genetic analyses to examine an important position in the gene sequence, and we empirically assess and compare the color perception of individuals possessing more than three retinal photopigment genes with those possessing fewer retinal photopigment genes. Women with four-photopigment genotypes are found to perceive significantly more chromatic appearances in comparison with either male or female trichromat controls. We provide a rationale for this previously undetected finding and discuss implications for theories of color perception and gender differences in color behavior.

Article PDF

Download to read the full article text

Similar content being viewed by others

Chromatic discrimination in fixed saturation levels from trichromats and subjects with congenital color vision deficiency

Article Open access 04 April 2022

Color Vision Evaluation

Chapter © 2024

Gene therapy in color vision deficiency: a review

Article 02 February 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Behavioral Genetics
  • Colour vision
  • Color Perception
  • Retina
  • Sexual Dimorphism
  • Vision and Colour Science
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Almirall, H., &Gutierrez, E. (1987). Auditory and visual reaction time in adults during long performance.Perceptual & Motor Skills,65, 543–552.

    Google Scholar 

  • Anyan, W.R., Jr., &Quillian, W. W., II (1971). The naming of primary colors by children.Child Development,42, 1629–1632.

    Article  Google Scholar 

  • Asenjo, A. B., Rim, J., &Oprian, D. D. (1994). Molecular determinants of human red /green color discrimination.Neuron,12, 1131–1138.

    Article  PubMed  Google Scholar 

  • Blough, P. M., &Slavin, L. K. (1987). Reaction time assessments of gender differences in visual-spatial performance.Perception & Psychophysics,41, 276–281.

    Google Scholar 

  • Boker, S. (1997). A measurement of the adaptation of color vision to the spectral environment.Psychological Science,8, 130–143.

    Article  Google Scholar 

  • Boring, E. G. (1942).Sensation and perception in the history of experimental psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Boynton, R. M., Schafer, W. & Neun, M. E. (1964). Hue-wavelength relation measured by color-naming method for three retinal locations.Science,146, 666–668.

    Article  PubMed  Google Scholar 

  • Brabyn, L. B., &McGuinness, D. (1979). Gender differences in response to spatial frequency and stimulus orientation.Perception & Psychophysics,26, 319–324.

    Google Scholar 

  • Brindley, G. S. (1960).Physiology of the retina and the visual pathway. London: Edward Arnold.

    Google Scholar 

  • Buckalew, L. W., &Buckalew, N. M. (1989). Note on color preference and color vision test performance.Perception & Motor Skills,69, 1039–1042.

    Google Scholar 

  • Campbell, F. W. (1986). In search of the spectrum’s elusive yellow.Ophthalmic Physiological Optics,6, 129–133.

    Article  Google Scholar 

  • Cohn, S. A., Emmerich, D. S., &Carlson, E. A. (1989). Differences in the responses of heterozygous carriers of color blindness and normal controls to briefly presented stimuli.Vision Research,29, 255–262.

    Article  PubMed  Google Scholar 

  • Crone, R. A. (1959). Spectral sensitivity in color-defective subjects and heterozygous carriers.American Journal of Ophthalmology,48, 231–238.

    PubMed  Google Scholar 

  • Dartnall, H. J. A., Bowmaker, J. K., &Mollon, J. D. (1983). Human visual pigments: Microspectrophotometric results from the eyes of seven persons.Proceedings of the Royal Society of London: Series B,220, 115–13.

    Article  Google Scholar 

  • Deeb, S. S., &Motulsky, A. G. (1996). Molecular genetics of human color vision.Behavioral Genetics,26, 195–206.

    Article  Google Scholar 

  • DeMarco, P., Pokorny, J., &Smith, V. C. (1992). Full spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats.Journal of the Optical Society of America A,9, 1465–1476.

    Article  Google Scholar 

  • DeVries, H. L. (1948). The luminosity curve of the eye as determined by the measurements with the flickerphotometer.Physica,XIV, 367–380.

    Article  Google Scholar 

  • Dimmick, F. L., &Hubbard, M. R. (1939). The spectral location of psychologically unique yellow, green and blue.American Journal of Psychology,52, 242–251.

    Article  Google Scholar 

  • Feig, K., &Ropers, H. (1978). On the incidence of unilateral and bilateral colour blindness in heterozygous females.Journal of Human Genetics,41, 313–323.

    Article  Google Scholar 

  • Furbee, L. N., Maynard, K., Smith, J., Benfer, B. A., Jr.,Quick, S., &Ross, L. (1997). The emergence of color cognition from color perception.Journal of Linguistic Anthropology,6, 223–240.

    Article  Google Scholar 

  • Hardin, C. L., &Maffi, L. (Eds.) (1997).Color categories in thought and language. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • He, J. C., &Shevell, S. K. (1995). Variation in color matching and discrimination among deuteranomalous trichromats: Theoretical implications of small differences in photopigments.Vision Research,35, 2579–2588.

    Article  PubMed  Google Scholar 

  • Hecht, S., &Shlaer, S. (1936). The color vision of dichromats.Journal of General Physiology,20, 57–93.

    Article  PubMed  Google Scholar 

  • Hsia, Y. &Graham, C. H. (1957). Spectral luminosity curves for protanopic, deuteranopic and normal subjects.Proceedings of the National Academy of Science,43, 1011–1019.

    Article  Google Scholar 

  • Jacobs, G. H. (1998). Photopigments and seeing—Lessons from natural experiments.Investigative Ophthalmology & Visual Science,39, 2205–2216.

    Google Scholar 

  • Jameson, D., &Hurvich, L. M. (1956). Theoretical analysis of anomalous trichromatic color vision.Journal of the Optical Society of America,46, 1075–1089.

    Article  PubMed  Google Scholar 

  • Jordan, G., &Mollon, J. D. (1993). A study of women heterozygous for color deficiencies.Vision Research,33, 1495–1508.

    Article  PubMed  Google Scholar 

  • Judd, D. B. (1945). Standard response functions for protanopic and deuteranopic vision.Journal of the Optical Society of America,35, 199–221.

    Article  Google Scholar 

  • Kraft, T. W., Neitz, J., &Neitz, M. (1998). Spectra of human cones.Vision Research,38, 3663–3670.

    Article  PubMed  Google Scholar 

  • Krill, A. E., &Beutler, E. (1964). The red-light absolute threshold in heterozygote protan carriers.Investigative Ophthalmology,3, 107–118.

    PubMed  Google Scholar 

  • Krill, A. E., &Beutler, E. (1965). Red light thresholds in heterozygote carriers of protanopia: Genetic implications.Science,149, 186–188.

    Article  PubMed  Google Scholar 

  • Lakoff, R. T. (1975).Language and woman’s place. San Francisco: Harper & Row.

    Google Scholar 

  • Lyon, M. F. (1961). Gene action in the X chromosome of the mouse(Mus musculus L.).Nature,190, 372–373.

    Article  PubMed  Google Scholar 

  • MacLeod, D. I. A. (1985). Receptoral constraints on colour appearance. In D. Ottoson & S. Zeki (Eds.),Central and peripheral mechanisms of colour vision (pp. 103–116). London: Macmillian.

    Google Scholar 

  • MacLeod, D. I. A., & von der Twer, T. (2000).The pleistochrome: Optimal opponent codes for natural colors. Manuscript submitted for publication.

  • Maloney, L. T. (1992). Color constancy and color perception: The linear models framework. In D. E. Meyer & S. Kornblum (Eds.),Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (pp. 59–78). Cambridge, MA: MIT Press.

    Google Scholar 

  • Mausfeld, R. (1998). Color perception: From Grassman codes to a dual code for object and illumination colors. In W. G. K. Backhaus, R. Kliegl, & J. S. Werner (Eds.),Color vision: Perspectives from different disciplines (pp. 219–250). New York: Walter de Gruyter.

    Google Scholar 

  • Mausfeld, R., &Niederée, R. (1993). Inquiries into relational concepts of colour based on an incremental principle of colour coding for minimal relational stimuli.Perception,22, 427–462.

    Article  PubMed  Google Scholar 

  • McGuinness, D. (1976). Away from a unisex psychology: Individual differences in visual sensory and perceptual processes.Perception,5, 279–294.

    Article  PubMed  Google Scholar 

  • McGuinness, D., &Lewis, I. (1976). Sex differences in visual persistence: Experiments on the Ganzfeld and afterimages.Perception,5, 295–301.

    Article  PubMed  Google Scholar 

  • Menzel, R. (1985). Colour pathways and colour vision in the honeybee. In D. Ottoson & S. Zeki (Eds.),Central and peripheral mechanisms of colour vision (Proceedings of an International Symposium at the Wenner-Gren Center, Vol. 43, pp. 211–233). London: Macmillan.

    Google Scholar 

  • Merbs, S. L., &Nathans, J. (1992a). Absorption spectra of human cone pigments.Nature,356, 433–435.

    Article  PubMed  Google Scholar 

  • Merbs, S. L., &Nathans, J. (1992b). Absorption spectra of hybrid pigments responsible for anomalous color vision.Science,258, 464–466.

    Article  Google Scholar 

  • Merbs, S. L., &Nathans, J. (1993). Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments.Photochemical Photobiology,58, 706–710.

    Article  Google Scholar 

  • Miller, S. A., Dykes, D. D., &Polesky, H. F. (1998). A simple salting out procedure for extracting DNA from human nucleated cells.Nucleic Acids Research,16, 1215.

    Article  Google Scholar 

  • Miyahara, E., Pokorny, J., Smith, V. C., Baron, R., &Baron, E. (1998). Color vision in two observers with highly biased LWS/MWS cone ratios.Vision Research,38, 601–612.

    Article  PubMed  Google Scholar 

  • Mollon, J. D. (1992). Worlds of difference.Nature,356, 378–379.

    Article  PubMed  Google Scholar 

  • Mollon, J. D. (1995). Seeing colour. In T. Lamb & J. Bourriau (Eds.),Colour, art & science (pp. 127–150). Cambridge: Cambridge University Press.

    Google Scholar 

  • Nagy, A. L., MacLeod, D. I. A., Heyneman, N. E., &Eiser, A. (1981). Four cone pigments in women heterozygous for color deficiency.Journal of the Optical Society of America,71, 719–722.

    Article  PubMed  Google Scholar 

  • Nathans, J. (1997). The genes for color vision. In A. Byrne & D. R. Hilbert (Eds.),Readings on Color, Vol. 2: The science of color (pp. 249–258). Cambridge, MA: MIT Press.

    Google Scholar 

  • Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B., &Hogness, D. S. (1986). Molecular genetics of inherited variation in human color vision.Science,232, 203–210.

    Article  PubMed  Google Scholar 

  • Nathans, J., Thomas, D., &Hogness, D. S. (1986). Molecular genetics of human color vision: The genes encoding blue, green, and red pigments.Science,232, 193–202.

    Article  PubMed  Google Scholar 

  • Neitz, J., &Jacobs, G. H. (1986). Polymorphism of the long-wavelength cone in normal human color vision.Nature,323, 623–625.

    Article  PubMed  Google Scholar 

  • Neitz, J., &Neitz, M. (1994). Colour vision defects. In A. S. Wright & B. Jay (Eds.),Molecular genetics of inherited eye disorders (pp. 217–257). Chur: Harwood.

    Google Scholar 

  • Neitz, J., Neitz, M., &Jacobs, G. H. (1993). More than three different cone pigments among people with normal color vision.Vision Research,33, 117–122.

    Article  PubMed  Google Scholar 

  • Neitz, M., Kraft, T. W., &Neitz, J. (1998). Expression of L-cone pigment gene subtypes in females.Vision Research,38, 3221–3225.

    Article  PubMed  Google Scholar 

  • Neitz, M., &Neitz, J. (1998). Molecular genetics and the biological basis of color vision. In W. G. K. Backhaus, R. Kliegl, & J. S. Werner (Eds.),Color Vision: Perspectives from different disciplines (pp. 101–119). New York: Walter de Gruyter.

    Google Scholar 

  • Neitz, M., Neitz, J., &Jacobs, G. H. (1995). Genetic basis of photopigment variations in human dichromats.Vision Research,35, 2095–2130.

    Article  PubMed  Google Scholar 

  • Nerger, J. L. (1988).The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea and parafovea. Unpublished doctoral dissertation, University of California at San Diego, La Jolla.

    Google Scholar 

  • Nowaczyk, R. H. (1982). Sex-related differences in the color lexicon.Language & Speech,25, 257–265.

    Google Scholar 

  • Piantanida, T. P. (1976). Polymorphism of human color vision.American Journal of Optometry & Physiological Optics,53, 647–657.

    Google Scholar 

  • Pickford, R. W. (1959). Some heterozygous manifestations of colourblindness.British Journal of Physiological Optics,16, 83–95.

    PubMed  Google Scholar 

  • Pokorny, J., &Smith, V. C. (1977). Evaluation of a single pigment shift model of anomalous trichromacy.Journal of the Optical Society of America,67, 1196–1209.

    Article  PubMed  Google Scholar 

  • Pokorny, J., &Smith, V. C. (1982). New observations concerning redgreen colour defects.Colour Research & Application,7, 159–164.

    Article  Google Scholar 

  • Poynter, D. (1988). Variability in brightness matching of colored lights.Human Factors,30, 143–151.

    PubMed  Google Scholar 

  • Purdy, D. (1931). Spectral hue as a function of intensity.American Journal of Psychology,43, 541–559.

    Article  Google Scholar 

  • Regan, B. C., Reffin, J. P., &Mollon, J. D. (1994). Luminance noise and the rapid determination of discrimination ellipses in colour deficiency.Vision Research,34, 1279–1299.

    Article  PubMed  Google Scholar 

  • Rich, E. (1977). Sex-related difference in color vocabulary.Language & Speech,20, 404–409.

    Google Scholar 

  • Roorda, A., &Williams, D. R. (1999). The arrangement of the three cone classes in the living human eye.Nature,397, 520–522.

    Article  PubMed  Google Scholar 

  • Saito, M. (1994). A cross-cultural study on color preference in three Asian cities: Comparison between Tokyo, Taipei and Tianjin.Japanese Psychological Research,36, 219–232.

    Google Scholar 

  • Saito, M. (1996). A comparative study of color preferences in Japan, China and Indonesia with emphasis on the preference for white.Perceptual & Motor Skills,83, 115–128.

    Google Scholar 

  • Saito, M. (1999). Blue and seven phenomena among Japanese students.Perceptual & Motor Skills,89, 532–536.

    Article  Google Scholar 

  • Schmidt, I. (1955). A sign of manifest heterozygosity in carriers of color deficiency.American Journal of Optometry,32, 404–408.

    Google Scholar 

  • Shapiro, A. E. (1984).The optical papers of Isaac Newton: Vol. 1. The optical lectures 1670–1672 (pp. 539–554). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sharpe, L. T., Stockman, A., Jaegle, H., Knau, H., Klausen, G., Reitner, A, &Nathans, J. (1998). Red, green and red-green hybrid pigments in the human retina: Correlations between deduced protein sequences and psychophysically measured spectral sensitivities.Journal of Neuroscience,18, 10053–10069.

    PubMed  Google Scholar 

  • Sharpe, L. T., Stockman, A., Knau, H., &Jaegle, H. (1998). Macular pigment densities derived from central and peripheral spectral sensitivity differences.Vision Research,38, 3233–3239.

    Article  PubMed  Google Scholar 

  • Sjoberg, S. A., Neitz, M., Balding, S. D., &Neitz, J. (1998). L-cone pigment genes expressed in normal colour vision.Vision Research,38, 3213–3219.

    Article  PubMed  Google Scholar 

  • Smeulders, N., Campbell, F. W., &Andrews, P. R. (1994). The role of delineation and spatial frequency in the perception of the colors of the spectrum.Vision Research,34, 927–936.

    Article  PubMed  Google Scholar 

  • Stockman, A., &Sharpe, L. T. (1998). Human cone spectral sensitivities: A progress report.Vision Research,38, 3193–3206.

    Article  PubMed  Google Scholar 

  • Stoerig, P. (1998). Wavelength information processing versus color perception: Evidence from blindsight and color-blind sight. In W. G. K. Backhaus, R. Kliegl, & J. S. Werner (Eds.),Color vision: Perspectives from different disciplines (pp. 131–147). New York: Walter de Gruyter.

    Google Scholar 

  • Swaringen, S., Layman, S., &Wilson, A. (1978). Sex differences in color naming.Perceptual & Motor Skills,47, 440–442.

    Google Scholar 

  • Thomas, L. L., Curtis, A. J., &Bolton, R. (1978). Sex differences in elicited color lexicon size.Perceptual & Motor Skills,47, 77–78.

    Google Scholar 

  • Thomson, L. C. (1954). Sensations aroused by monochromatic stimuli and their prediction.Optical Acta,1, 93–102.

    Google Scholar 

  • Troscianko, T., Davidoff, J., Humphreys, G., Landis, T., Fahle, M., Greenlee, M., Brugger, P., &Phillips, W. (1996). Human colour discrimination based on a non-parvocellular pathway.Current Biology,6, 200–210.

    Article  PubMed  Google Scholar 

  • Wilder, D. G. (1970).The photopic spectral sensitivity of color normal, protanopic and deuteronopic observers. Unpublished doctoral dissertation, University of California, Los Angeles.

    Google Scholar 

  • Winderickx, J., Battisti, L., Hibiya, Y., Motulsky, A. G., &Deeb, S. S. (1993). Haplotype diversity in the human red and green opsin genes: Evidence for frequent sequence exchange in exon 3.Human Molecular Genetics Polymorphism,2, 1413–1421.

    Article  Google Scholar 

  • Winderickx, J., Lindsey, D. T., Sanocki, E., Teller, D. Y., Motulsky, A.G., &Deeb, S. S. (1992). Polymorphism in red photopigment underlies variation in color matching.Nature,356, 431–433.

    Article  PubMed  Google Scholar 

  • Wyszecki, G., &Stiles, W. S. (1982).Color science: Concepts and methods, quantitative data and formulae (2nd ed.). New York: Wiley.

    Google Scholar 

  • Yasuma, T., Tokuda, H., &Ichikawa, H. (1984). Abnormalities of cone photopigments in genetic carriers of protanomaly.Archives of Ophthalmology,102, 897–900.

    PubMed  Google Scholar 

  • Zegura, S. L. (1997). Genes, opsins, neurons, and color categories: Closing the gaps. In C. L. Hardin & L. Maffi (Eds.),Color categories in thought and language (pp. 283–292). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychology, University of California at San Diego, 9500 Gilman Dr., 92093-0109, La Jolla, CA

    Kimberly A. Jameson & Susan M. Highnote

  2. University of California at San Diego School of Medicine, La Jolla, California

    Linda M. Wasserman

Authors
  1. Kimberly A. Jameson
    View author publications

    Search author on:PubMed Google Scholar

  2. Susan M. Highnote
    View author publications

    Search author on:PubMed Google Scholar

  3. Linda M. Wasserman
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Kimberly A. Jameson.

Additional information

Portions of this research were presented at the 1998 European Conference on Visual Perception, the 1998 meeting of the Optical Society of America, and the 1998 meeting of the Psychonomic Society. Partial support was provided by the National Science Foundation (Grant NSF-9973903 to K.A.J.) and a UCSD Hellman Faculty Award (to K.A.J.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jameson, K.A., Highnote, S.M. & Wasserman, L.M. Richer color experience in observers with multiple photopigment opsin genes. Psychonomic Bulletin & Review 8, 244–261 (2001). https://doi.org/10.3758/BF03196159

Download citation

  • Received: 16 March 2000

  • Accepted: 17 October 2000

  • Issue date: June 2001

  • DOI: https://doi.org/10.3758/BF03196159

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Color Vision
  • Color Perception
  • Opsin Gene
  • Spectral Location
  • Pigment Gene
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

152.53.39.118

Not affiliated

Springer Nature

© 2025 Springer Nature