Advertisement

Memory & Cognition

, Volume 31, Issue 5, pp 816–826 | Cite as

The natural appearance of unnatural incline speed

  • Doug RohrerEmail author
Article

Abstract

In three experiments, college students provided judgments about a marble’s speed along a nonlinear incline. Each experiment revealed widespread support for the slope-speed belief, a mistaken belief holding that an object’s speed at any point depends on the slope at that point. In truth, an object’s incline speed varies with its elevation. In Experiment 1, participants relied solely on a diagram. In Experiments 2 and 3, participants observed computer animations depicting the descent of a marble at speeds conforming to either the slope-speed belief or Newtonian theory, and they rated the slope-speed version as more “natural” than the correct version. The task in Experiment 1 gauged participants’ consciously available knowledge, but the perceptual realism of the slope-speed animations suggests that the slope-speed belief is also held outside awareness. By contrast, virtually all previously identified false beliefs about motion appear unnatural once animated.

Keywords

Explicit Knowledge Representational Momentum Roller Coaster Linear Ramp Perceptual Realism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anton, H. (1980).Calculus with analytic geometry (2nd ed.). New York: Wiley.Google Scholar
  2. Bertamini, M. (1993). Memory for position and dynamic representations.Memory & Cognition,21, 449–457.CrossRefGoogle Scholar
  3. Bhalla, M., & Proffitt, D. R. (1999). Visual-motor recalibration in geographical slant perception.Journal of Experimental Psychology: Human Perception & Performance,25, 1076–1096.CrossRefGoogle Scholar
  4. Caramazza, A., McCloskey, M., & Green, B. (1981). Naive beliefs in “sophisticated” subjects: Misconceptions about trajectories of objects.Cognition,9, 117–123.CrossRefPubMedGoogle Scholar
  5. Catrambone, R., Jones, C. M., Jonides, J., & Seifert, C. (1995). Reasoning about curvilinear motion: Using principles or analogy.Memory & Cognition,23, 368–373.CrossRefGoogle Scholar
  6. Crawford, F. S. (1996). Rolling and slipping down Galileo’s plane: Rhythm of the spheres.American Journal of Physics,64, 541–546.CrossRefGoogle Scholar
  7. Creem, S. H., & Proffitt, D. R. (1998). Two memories for geographical slant: Separation and interdependence of action and awareness.Psychonomic Bulletin & Review,5, 22–36.CrossRefGoogle Scholar
  8. Drake, S. (1989). Galileo’s gravitational units.The Physics Teacher,27, 432–436.CrossRefGoogle Scholar
  9. Halliday, D., & Resnick, R. (1981).Fundamentals of physics (2nd ed.). New York: Wiley.Google Scholar
  10. Hecht, H., & Bertamini, M. (2000). Understanding projectile acceleration.Journal of Experimental Psychology: Human Perception & Performance,26, 730–746.CrossRefGoogle Scholar
  11. Hubbard, T. L. (1995). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force.Psychonomic Bulletin & Review,2, 322–338.CrossRefGoogle Scholar
  12. Hubbard, T. L. (1998). Representational momentum and other displacements in memory as evidence for nonconscious knowledge of physical principles. In S. R. Hameroff, A.W. Kaszniak, & A. C. Scott (Eds.),Toward a science of consciousness II: The second Tucson discussions and debates (pp. 505–512). Cambridge, MA: MIT Press.Google Scholar
  13. Kaiser, M. K., Jonides, J., & Alexander, J. (1986). Intuitive reasoning about abstract and familiar physics problems.Memory & Cognition,14, 308–312.CrossRefGoogle Scholar
  14. Kaiser, M. K., McCloskey, M., & Proffitt, D. R. (1986). Development of intuitive theories of motion: Curvilinear motion in the absence of external forces.Developmental Psychology,22, 67–71.CrossRefGoogle Scholar
  15. Kaiser, M. K., Proffitt, D. R., & Anderson, K. (1985). Judgments of natural and anomalous trajectories in the presence and absence of motion.Journal of Experimental Psychology: Learning, Memory, & Cognition,11, 795–803.CrossRefGoogle Scholar
  16. Kaiser, M. K., Proffitt, D. R., Whelan, S. M., & Hecht, H. (1992). Influence of animation on dynamical judgments.Journal of Experimental Psychology: Human Perception & Performance,18, 669–689.CrossRefGoogle Scholar
  17. Kozhevnikov, M., & Hegarty, M. (2001). Impetus beliefs as default heuristics between explicit and implicit knowledge about motion.Psychonomic Bulletin & Review,8, 439–453.CrossRefGoogle Scholar
  18. McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear motion in the absence of external forces: Naive beliefs about the motion of objects.Science,210, 1139–1141.CrossRefPubMedGoogle Scholar
  19. McCloskey, M., & Kohl, D. (1983). Naive physics: The curvilinear impetus principle and its role in interactions with moving objects.Journal of Experimental Psychology: Learning, Memory, & Cognition,9, 146–156.CrossRefGoogle Scholar
  20. McCloskey, M., Washburn, A., & Felch, L. (1983). Intuitive physics: The straight-down belief and its origin.Journal of Experimental Psychology: Learning, Memory, & Cognition,9, 636–649.CrossRefGoogle Scholar
  21. Proffitt, D. R., Bhalla, M., Gossweiler, R., & Midgett, J. (1995). Perceiving geographical slant.Psychonomic Bulletin & Review,2, 409–428.CrossRefGoogle Scholar
  22. Proffitt, D. R., Creem, S. H., & Zosh, W. D. (2001). Seeing mountains in mole hills: Geographical-slant perception.Psychological Science,12, 418–423.CrossRefPubMedGoogle Scholar
  23. Rohrer, D. (1994).More thought provokers. Berkeley, CA: Key Curriculum Press.Google Scholar
  24. Rohrer, D. (2002). Misconceptions about incline speed for nonlinear slopes.Journal of Experimental Psychology: Human Perception & Performance,28, 963–973.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2003

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of South FloridaTampa

Personalised recommendations