Animal Learning & Behavior

, Volume 32, Issue 1, pp 4–14 | Cite as

Social learning strategies

  • Kevin N. Laland


In most studies of social learning in animals, no attempt has been made to examine the nature of the strategy adopted by animals when they copy others. Researchers have expended considerable effort in exploring the psychological processes that underlie social learning and amassed extensive data banks recording purported social learning in the field, but the contexts under which animals copy others remain unexplored. Yet, theoretical models used to investigate the adaptive advantages of social learning lead to the conclusion that social learning cannot be indiscriminate and that individuals should adopt strategies that dictate the circumstances under which they copy others and from whom they learn. In this article, I discuss a number of possible strategies that are predicted by theoretical analyses, includingcopy when uncertain,copy the majority, andcopy if better, and consider the empirical evidence in support of each, drawing from both the animal and human social learning literature. Reliance on social learning strategies may be organized hierarchically, their being employed by animals when unlearned and asocially learned strategies prove ineffective but before animals take recourse in innovation.


Social Learning Animal Behaviour Mate Choice Zebra Finch Niche Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barnard, C. J., &Sibly, R. M. (1981). Producers and scroungers: A general model and its application to captive flocks of house sparrows.Animal Behaviour,29, 543–550.CrossRefGoogle Scholar
  2. Baron, R. S., Vandello, J. A., &Brunsman, B. (1996). The forgotten variable in conformity research: The impact of task importance on social influence.Journal of Personality & Social Psychology,71, 915–927.CrossRefGoogle Scholar
  3. Barrett, L., Dunbar, R., &Lycett, J. (2002).Human evolutionary psychology. London: Macmillan.Google Scholar
  4. Barta, Z., &Giraldeau, L.-A. (1998). The effect of dominance hierarchy on the use of alternative foraging tactics: A phenotype-limited producing-scrounging game.Behavioral Ecology & Sociobiology,42, 217–223.CrossRefGoogle Scholar
  5. Beauchamp, G., &Kacelnik, A. (1991). Effects of the knowledge of partners on learning rates in zebra finchesTaeniopygia guttata.Animal Behaviour,41, 247–254.CrossRefGoogle Scholar
  6. Beck, M., &Galef, B. G., Jr. (1989). Social influences on the selection of a protein-sufficient diet by Norway ratsRattus norvegicus.Journal of Comparative Psychology,103, 132–139.CrossRefGoogle Scholar
  7. Blackmore, S. (1999).The meme machine. Oxford: Oxford University Press.Google Scholar
  8. Boyd, R., &Richerson, P. J. (1985).Culture and the evolutionary process. Chicago: University of Chicago Press.Google Scholar
  9. Boyd, R., &Richerson, P. J. (1988). An evolutionary model of social learning: The effects of spatial and temporal variation. In T. Zentall & B. G. Galef (Eds.),Social learning: A psychological and biological approach (pp. 29–48). Hillsdale, NJ: Erlbaum.Google Scholar
  10. Boyd, R., &Richerson, P. J. (1992). Punishment allows the evolution of cooperation (or anything else) in sizable groups.Ethology & Sociobiology,13, 171–195.CrossRefGoogle Scholar
  11. Boyd, R., &Richerson, P. J. (1995). Why does culture increase human adaptability?Ethology & Sociobiology,16, 125–143.CrossRefGoogle Scholar
  12. Boyd, R., &Richerson, P. J. (1996). Why culture is common, but cultural evolution is rare.Proceedings of the British Academy,88, 73–93.Google Scholar
  13. Brooks, R. (1996). Copying and the repeatability of mate choice.Behavioral Ecology & Sociobiology,39, 323–329.CrossRefGoogle Scholar
  14. Byrne, R. W. (1999). Cognition in great ape ecology: Skill-learning ability opens up foraging opportunities. In H. O. Box & K. R. Gibson (Eds.),Mammalian social learning: Comparative and ecological perspectives (pp. 333–350). Cambridge: Cambridge University Press.Google Scholar
  15. Byrne, R.W., &Russon, A. E. (1998). Learning by imitation: A hierarchical approach.Behavioral & Brain Sciences,21, 667–684.Google Scholar
  16. Catchpole, C. K., &Slater, P. J. B. (1995).Bird song: Biological themes and variations. Cambridge: Cambridge University Press.Google Scholar
  17. Chivers, D. P., &Smith, J. F. (1995). Chemical recognition of risky habitats is culturally transmitted among fathead minnows,Pimephales promelas (Osteichthyes, Cyprinidae).Ethology,99, 286–296.CrossRefGoogle Scholar
  18. Chou, L. S., &Richerson, P. J. (1992). Multiple models in social transmission of food selection by Norway rats,Rattus norvegicus.Animal Behaviour,44, 337–343.CrossRefGoogle Scholar
  19. Coussi-Korbel, S., &Fragaszy, D. M. (1995). On the relation between social dynamics and social learning.Animal Behaviour,50, 1441–1453.CrossRefGoogle Scholar
  20. Dawkins, R. (1976). Hierarchical organisation: A candidate principle for ethology. In P. P. G. Bateson & R. A. Hinde (Eds.),Growing points in ethology (pp. 7–54). Cambridge: Cambridge University Press.Google Scholar
  21. Day, R. [L.] (2003).Innovation and social learning in monkeys and fish: Empirical findings and their application to reintroduction techniques. Unpublished doctoral thesis, University of Cambridge.Google Scholar
  22. Day, R. L., Coe, R. L., Kendal, J. R., &Laland, K.N. (2003). Neophilia, innovation and social learning: A study of intergeneric differences in Callitrichid monkeys.Animal Behaviour,65, 559–571.CrossRefGoogle Scholar
  23. Day, R. L.,Coolen, I., &Laland, K. N. (in press). The role of conformity in guppy foraging when prior personal and social information conflict.Behavioral Ecology.Google Scholar
  24. Day, R. [L.], MacDonald, T., Brown, C., Laland, K., &Reader, S. M. (2001). Interactions between shoal size and conformity in guppy social foraging.Animal Behaviour,62, 917–925.CrossRefGoogle Scholar
  25. Doligez, B., Danchin, E., &Clobert, J. (2002). Public information and breeding habitat selection in a wild bird population.Science,297, 1168–1170.CrossRefPubMedGoogle Scholar
  26. Dowsett-Lemaire, F. (1979). The imitative range of the song of the marsh warblerAcrocephalus palustris, with special reference to imitations of African birds.Ibis,121, 453–468.CrossRefGoogle Scholar
  27. Drea, C. M., &Wallen, K. (1999). Low status monkeys “play dumb” when learning in mixed social groups.Proceedings of the National Academy of Sciences,96, 12965–12969.CrossRefGoogle Scholar
  28. Dugatkin, L. A. (1992). Sexual selection and imitation: Females copy the mate choice of others.American Naturalist,139, 1384–1389.CrossRefGoogle Scholar
  29. Feldman, M. W., Aoki, K., &Kumm, J. (1996). Individual versus social learning: Evolutionary analysis in a fluctuating environment.Anthropological Science,104, 209–232.Google Scholar
  30. Fragaszy, D. M., &Visalberghi, E. (1990). Social processes affecting the appearance of innovative behaviours in capuchin monkeys.Folia Primatologica,54, 155–165.CrossRefGoogle Scholar
  31. Fritz, J., &Kotrschal, K. (1999). Social learning in common ravens,Corvus corax.Animal Behaviour,57, 785–793.CrossRefPubMedGoogle Scholar
  32. Galef, B. G., Jr. (1992). The question of animal culture.Human Nature,3, 157–178.CrossRefGoogle Scholar
  33. Galef, B.G., Jr. (1995). Why behaviour patterns that animals learn socially are locally adaptive.Animal Behaviour,49, 1325–1334.CrossRefGoogle Scholar
  34. Galef, B. G., Jr. (1996). Social enhancement of food preferences in Norway rats: A brief review. In C.M. Heyes & B. G. Galef, Jr. (Eds.),Social learning and imitation: The roots of culture (pp. 49–64). San Diego: Academic Press.Google Scholar
  35. Galef, B. G., Jr., &White, D. J. (1998). Mate-choice copying in Japanese quail,Coturnix coturnix japonica.Animal Behaviour,55, 545–552.CrossRefGoogle Scholar
  36. Gibson, R. M., &Höglund, J. (1992). Copying and sexual selection.Trends in Ecology & Evolution,7, 229–232.CrossRefGoogle Scholar
  37. Gintis, H. (2000).Game theory evolving. Princeton, NJ: Princeton University Press.Google Scholar
  38. Giraldeau, L.-A., &Beauchamp, G. (1999). Food exploitation: Searching for the optimal joining policy.Trends in Ecology & Evolution,14, 102–106.CrossRefGoogle Scholar
  39. Giraldeau, L.-A., &Caraco, T. (2000).Social foraging theory. Princeton, NJ: Princeton University Press.Google Scholar
  40. Giraldeau, L.-A., Caraco, T., &Valone, T. J. (1994). Social foraging: Individual learning and cultural transmission of innovations.Behavioral Ecology,5, 35–43.CrossRefGoogle Scholar
  41. Giraldeau, L.-A., &Lefebvre, L. (1986). Exchangeable producer and scrounger roles in a captive flock of feral pigeons: A case for the skill pool effect.Animal Behaviour,34, 797–803.CrossRefGoogle Scholar
  42. Giraldeau, L.-A., &Lefebvre, L. (1987). Scrounging prevents cultural transmission of food finding behaviour in pigeons.Animal Behaviour,35, 387–394.CrossRefGoogle Scholar
  43. Giraldeau, L.-A., Valone, T. J., &Templeton, J. J. (2002). Potential disadvantages of using socially acquired information.Philosophical Transactions of the Royal Society of London,357, 1559–1566.CrossRefPubMedGoogle Scholar
  44. Grafen, A. (1984). Natural selection, kin selection and group selection. In J. R. Krebs & N. B. Davies (Eds.),Behavioural ecology: An evolutionary approach (2nd ed., pp. 62–84). Oxford: Blackwell.Google Scholar
  45. Griffiths, S.W. (2003). Learned recognition of conspecifics by fishes.Fish & Fisheries,4, 256–268.CrossRefGoogle Scholar
  46. Hamilton, W. D. (1964). The genetical evolution of social behaviour I-II.Journal of Theoretical Biology,7, 1–52.CrossRefPubMedGoogle Scholar
  47. Henrich, J. (2001). Cultural transmission and the diffusion of innovations: Adoption dynamics indicate that biased cultural transmission is the predominate force in behavioral change and much of sociocultural evolution.American Anthropologist,103, 992–1013.CrossRefGoogle Scholar
  48. Henrich, J., &Boyd, R. (1998). The evolution of conformist transmission and the emergence of between-group differences.Evolution & Human Behavior,19, 215–242.CrossRefGoogle Scholar
  49. Henrich, J., &Gil-White, F. J. (2001). The evolution of prestige: Freely conferred deference as a mechanism for enhancing the benefits of cultural transmission.Evolution & Human Behavior,22, 165–196.CrossRefGoogle Scholar
  50. Henrich, J., &McElreath, R. (2003). The evolution of cultural evolution.Evolutionary Anthropology,12, 123–135.CrossRefGoogle Scholar
  51. Higgs, P. G. (2000). The memetic transition: A simulation study of the evolution of learning by imitation.Proceedings of the Royal Society of London B,267, 1355–1361.CrossRefGoogle Scholar
  52. Hunt, G. R., &Gray, R. D. (2003). Diversification and cumulative evolution in New Caledonian crow tool manufacture.Proceedings of the Royal Society of London B,270, 867–874.CrossRefGoogle Scholar
  53. Kelley, J. L., Evans, J. P., Ramnarine, I. W., &Magurran, A. E. (2003). Back to school: Can antipredator behaviour in guppies be enhanced through social learning?Animal Behaviour,65, 655–662.CrossRefGoogle Scholar
  54. Kendal, J. R. (2003).An investigation into social learning: Mechanisms, diffusion dynamics, functions and evolutionary consequences. Unpublished doctoral thesis, University of Cambridge.Google Scholar
  55. Kirkpatrick, M., &Dugatkin, L. A. (1994). Sexual selection and the evolutionary effects of copying mate choice.Behavioral Ecology á Sociobiology,34, 443–449.CrossRefGoogle Scholar
  56. Krause, J. (1993). Transmission of fright reaction between different species of fish.Behaviour,127, 37–48.CrossRefGoogle Scholar
  57. Krause, J., &Godin, J.-G. J. (1994). Shoal choice in the banded killifish (Fundulus diaphanus, Teleostei, Cyprinodontidae): Effects of predation risk, fish size, species composition and size of shoals.Ethology,98, 128–136.CrossRefGoogle Scholar
  58. Lachlan, R. F., Crooks, L., &Laland, K. N. (1998). Who follows whom? Shoaling preferences and social learning of foraging information in guppies.Animal Behaviour,56, 181–190.CrossRefPubMedGoogle Scholar
  59. LaFleur, D. L., Lozano, G. A., &Sclafani, M. (1997). Female mate choice copying in guppies,Poecilia reticulata: A re-evaluation.Animal Behaviour,54, 579–586.CrossRefPubMedGoogle Scholar
  60. Laland, K. N. (2001). Imitation, social learning and preparedness. In G. Gigerenzer & R. Selten (Eds.),Bounded rationality: The adaptive toolbox (pp. 233–247). Cambridge, MA: MIT Press.Google Scholar
  61. Laland, K. N., Odling-Smee, F. J., &Feldman, M.W. (2000). Niche construction, biological evolution and cultural change.Behavioral á Brain Sciences,23, 131–146.CrossRefGoogle Scholar
  62. Laland, K. N., &Williams, K. (1997). Shoaling generates social learning of foraging information in guppies.Animal Behaviour,53, 1161–1169.CrossRefPubMedGoogle Scholar
  63. Laland, K. N., &Williams, K. (1998). Social transmission of maladaptive information in the guppy.Behavioral Ecology,9, 493–499.CrossRefGoogle Scholar
  64. Lefebvre, L., &Giraldeau, L.-A. (1994). Cultural transmission in pigeons is affected by the number of tutors and bystanders present during demonstrations.Animal Behaviour,47, 331–337.CrossRefGoogle Scholar
  65. Lefebvre, L., &Palameta, B. (1988). Mechanisms, ecology and population diffusion of socially-learned food-finding behavior in feral pigeons. In T. R. Zentall & B. G. Galef, Jr. (Eds.),Social learning: Psychological and biological perspectives (pp. 141–164). Hillsdale, NJ: Erlbaum.Google Scholar
  66. Lindström, K., &Ranta, E. (1993). Social preferences by male guppies,Poecilia reticulata, based on shoal size and sex.Animal Behaviour,46, 1029–1031.CrossRefGoogle Scholar
  67. Mason, J. R. (1988). Direct and observational learning by redwinged blackbirds (Agelaius phoeniceus): The importance of complex visual stimuli. In T. R. Zentall & B. G. Galef, Jr. (Eds.),Social learning: Psychological and biological perspectives (pp. 99–115). Hillsdale, NJ: Erlbaum.Google Scholar
  68. McGregor, P. K., Peake, T.M., &Lampe, H.M. (2001). Fighting fishBetta splendens extract relative information from apparent interactions: What happens when what you see isn’t what you get.Animal Behaviour,62, 1059–1065.CrossRefGoogle Scholar
  69. Menzel, E. W., Jr. (1973). Leadership and communication in young chimpanzees. In E. W. Menzel, Jr. (Ed.),Precultural primate behavior (pp. 192–225). Basel: Karger.Google Scholar
  70. Menzel, E.W.[, Jr.] (1974). A group of young chimpanzees in a oneacre field. In A. M. Schrier & F. Stollnitz (Eds.),Behavior of nonhuman primates: Modern research trends (Vol. 5, pp. 83–153). New York: Academic Press.Google Scholar
  71. Mineka, S., &Cook, M. (1988). Social learning and the acquisition of snake fear in monkeys. In T. R. Zentall & B. G. Galef, Jr. (Eds.),Social learning: Psychological and biological perspectives (pp. 51–73). Hillsdale, NJ: Erlbaum.Google Scholar
  72. Nash, J. F. (1951). Non-cooperative games.Annals of Mathematics,54, 286–295.CrossRefGoogle Scholar
  73. Nicol, C. J., &Pope, S. J. (1994). Social learning in small flocks of laying hens.Animal Behaviour,47, 1289–1296.CrossRefGoogle Scholar
  74. Nowicki, S., Searcy, W. A., &Peters, S. (2002). Quality of song learning affects female response to male bird song.Proceedings of the Royal Society of London B,269, 1949–1954.CrossRefGoogle Scholar
  75. Odling-Smee, F. J., Laland, K. N., &Feldman, M.W. (2003).Niche construction: The neglected process in evolution (Monographs in Population Biology, No. 37). Princeton, NJ: Princeton University Press.Google Scholar
  76. Payne, R. B. (1996). Song traditions in indigo buntings: Origin, improvisation, dispersal and extinction in cultural evolution. In D. E. Kroodsma & E. H. Miller (Eds.),Ecology and evolution of acoustic communication in birds (pp. 198–220). Ithaca, NY: Cornell University Press.Google Scholar
  77. Pongrácz, P., Miklósi, A., Kubinyi, E., Topál, J., &Csányi, V. (2003). Interaction between individual experience and social learning in dogs.Animal Behaviour,65, 595–603.CrossRefGoogle Scholar
  78. Reader, S. M., & Laland, K. N. (Eds.) (2003).Animal innovation.Oxford: Oxford University Press.Google Scholar
  79. Rogers, A. R. (1988). Does biology constrain culture?American Anthropologist,90, 819–831.CrossRefGoogle Scholar
  80. Schlag, K. H. (1998). Why imitate, and if so, how? A bounded rational approach to multi-armed bandits.Journal of Economic Theory,78, 130–156.CrossRefGoogle Scholar
  81. Suboski, M. D., &Templeton, J. J. (1989). Life skills training for hatchery fish: Social learning and survival.Fisheries Research,7, 343–352.CrossRefGoogle Scholar
  82. Sugita, Y. (1980). Imitative choice behavior in guppies.Japan Psychological Research,22, 7–12.Google Scholar
  83. Swaney, W., Kendal, J. R., Capon, H., Brown, C., &Laland, K. N. (2001). Familiarity facilitates social learning of foraging behaviour in the guppy.Animal Behaviour,62, 591–598.CrossRefGoogle Scholar
  84. Templeton, J. J., &Giraldeau, L.-A. (1996). Vicarious sampling: The use of personal and public information by starlings foraging in a simple patchy environment.Behavioral Ecology & Sociobiology,38, 105–113.CrossRefGoogle Scholar
  85. Tomasello, M. (1994). The question of chimpanzee culture. In R. Wrangham, W. McGrew, F. de Waal, & P. Heltne (Eds.),Chimpanzee cultures (pp. 301–317). Cambridge, MA: Harvard University Press.Google Scholar
  86. Trivers, R. L. (1971). The evolution of reciprocal altruism.Quarterly Review of Biology,46, 35–57.CrossRefGoogle Scholar
  87. Valone, T. J. (1989). Group foraging, public information, and patch estimation.Oikos,56, 357–363.CrossRefGoogle Scholar
  88. White, D. J., &Galef, B. G., Jr. (1999). Mate-choice copying and conspecific cueing in Japanese quail,Coturnix coturnix japonica.Animal Behaviour,57, 465–473.CrossRefPubMedGoogle Scholar
  89. White, D. J., &Galef, B. G., Jr. (2000). “Culture” in quail: Social influences on mate choices in femaleCoturnix japonica.Animal Behaviour,59, 975–979.CrossRefPubMedGoogle Scholar
  90. Wilkinson, G. (1992). Information transfer at evening bat colonies.Animal Behaviour,44, 501–518.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2004

Authors and Affiliations

  1. 1.Centre for Social Learning and Cognitive Evolution, School of BiologyUniversity of St. AndrewsSt. Andrews, FifeScotland

Personalised recommendations