QMPE: Estimating Lognormal, Wald, and Weibull RT distributions with a parameter-dependent lower bound

  • Andrew HeathcoteEmail author
  • Scott Brown
  • Denis Cousineau


We describe and test quantile maximum probability estimator (QMPE), an open-source ANSI Fortran 90 program for response time distribution estimation.1 QMPE enables users to estimate parameters for the ex-Gaussian and Gumbel (1958) distributions, along with three “shifted” distributions (i.e., distributions with a parameter-dependent lower bound): the Lognormal, Wald, and Weibull distributions. Estimation can be performed using either the standard continuous maximum likelihood (CML) method or quantile maximum probability (QMP; Heathcote & Brown, in press). We review the properties of each distribution and the theoretical evidence showing that CML estimates fail for some cases with shifted distributions, whereas QMP estimates do not. In cases in which CML does not fail, a Monte Carlo investigation showed that QMP estimates were usually as good, and in some cases better, than CML estimates. However, the Monte Carlo study also uncovered problems that can occur with both CML and QMP estimates, particularly when samples are small and skew is low, highlighting the difficulties of estimating distributions with parameter-dependent lower bounds.


Weibull Distribution Skewed Distribution Royal Statistical Society Monte Carlo Study Shift Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Brown, S., &Heathcote, A. (2003). QMLE: Fast, robust, and efficient estimation of distribution functions based on quantiles.Behavior Research Methods, Instruments, & Computers,35,485–492.CrossRefGoogle Scholar
  2. Breukelen, G. J. P. (1995). Parallel information processing models compatible with lognormally distributed response times.Journal of Mathematical Psychology,39,396–399.CrossRefGoogle Scholar
  3. Cheng, R. C. H., &Amin, N. A. K. (1981). Maximum likelihood estimation of parameters in the inverse Gaussian distribution with unknown origin.Technometrics,23, 257–263.CrossRefGoogle Scholar
  4. Cheng, R. C. H., &Amin, N. A. K. (1983). Estimating parameters in continuous univariate distributions with a shifted origin.Journal of the Royal Statistical Society: Series B,45, 394–403.Google Scholar
  5. Cheng, R. C. H., &Iles, T. C. (1987). Corrected maximum likelihood in nonregular problems.Journal of the Royal Statistical Society: Series B,49, 95–101.Google Scholar
  6. Cheng, R. C. H., &Iles, T. C. (1990). Embedded models in three-parameter distributions and their estimation.Journal of the Royal Statistical Society: Series B,52, 135–149.Google Scholar
  7. Cheng, R. C. H., &Traylor, L. (1995). Non-regular maximum likelihood problems.Journal of the Royal Statistical Society: Series B,57, 3–44.Google Scholar
  8. Cousineau, D., Brown, S., & Heathcote, A. (2004).Fitting distributions using maximum likelihood: Methods and packages. Manuscript submitted for publication.Google Scholar
  9. Cousineau, D., Goodman, V., &Shiffrin, R. M. (2002). Extending statistics of extremes to distributions varying on position and scale, and implication for race models.Journal of Mathematical Psychology,46,431–454.CrossRefGoogle Scholar
  10. Dolan, C. V., van der Maas, H. L. J., &Molenaar, P. C. M. (2002). A framework for ML estimation of parameters (mixtures of) common reaction time distributions given optional truncation or censoring.Behavior Research Methods, Instruments, & Computers,34,304–323.CrossRefGoogle Scholar
  11. Ekström, M. (2001). Consistency of generalized maximum spacing estimates.Scandinavian Journal of Statistics,28,343–354.CrossRefGoogle Scholar
  12. Giesbrecht, F., &Kempthorne, O. (1976). Maximum likelihood estimation in the three-parameter lognormal distribution.Journal of the Royal Statistical Society: Series B,38, 257–264.Google Scholar
  13. Gumbel, E. J. (1958).The statistics of extremes. New York: Columbia University Press.Google Scholar
  14. Heathcote, A. (1996). RTSYS: A DOS application for the analysis of reaction time data.Behavior Research Methods, Instruments, & Computers,28,427–445.CrossRefGoogle Scholar
  15. Heathcote, A. (in press). Fitting the Wald and ex-Wald distributions to response time data.Behavior Research Methods, Instruments, & Computers.Google Scholar
  16. Heathcote, A., &Brown, S. (in press). Reply to Speckman and Rouder: A theoretical basis for QML.Psychonomic Bulletin & Review.Google Scholar
  17. Heathcote, A., Brown, S., &Mewhort, D. J. K. (2002). Quantile maximum likelihood estimation of response time distributions.Psychonomic Bulletin & Review,9,394–401.CrossRefGoogle Scholar
  18. Hyndman, R. J., &Fan, Y. (1996). Sample quantiles in statistical packages.American Statistician,50, 361–365.CrossRefGoogle Scholar
  19. McClelland, J. L. (1979). On the time relations of mental processes: An examination of systems of processes in cascade.Psychological Review,86,287–330.CrossRefGoogle Scholar
  20. McGill, W. J. (1963). Stochastic latency mechanisms. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.),Handbook of mathematical psychology (pp. 193–199). Oxford: Wiley.Google Scholar
  21. Ranneby, B. (1984). The maximum spacing method: An estimation method related to the maximum likelihood method.Scandinavian Journal of Statistics,11, 93–112.Google Scholar
  22. Ratcliff, R. (1978). A theory of memory retrieval.Psychological Review,85,59–108.CrossRefGoogle Scholar
  23. Ratcliff, R., &Murdock, B. B. (1976). Retrieval processes in recognition memory.Psychological Review,83,190–214.CrossRefGoogle Scholar
  24. Rouder, J. N., Lu, J., Speckman, P., Sun, D., & Jiang, Y. (in press). A hierarchical model for estimating response time distributions.Psychonomic Bulletin & Review.Google Scholar
  25. Speckman, P. L., & Rouder, J. N. (in press). A comment on Heathcote, Brown, and Mewhort’s QMLE estimation method for response time distributions.Psychonomic Bulletin & Review.Google Scholar
  26. Titterington, D. M. (1985). Comment on “Estimating parameters in continuous univariate distributions.”Journal of the Royal Statistical Society: Series B,47, 115–116.Google Scholar
  27. Ulrich, R., &Miller, J. (1994). Effects of outlier exclusion on reaction time analysis.Journal of Experimental Psychology: General,123,34–80.CrossRefGoogle Scholar
  28. Wald, A. (1947).Sequential analysis. New York: Wiley.Google Scholar
  29. Weibull, W. (1951). A statistical distribution function of wide applicability.Journal of Applied Mechanics,18,292–297.Google Scholar
  30. West, B. J., &Shlesinger, M. (1990). The noise in natural phenomena.American Scientist,78, 40–45.Google Scholar
  31. Woodworth, R. S., &Schlosberg, H. (1954).Experimental psychology. New York: Holt.Google Scholar
  32. Van Zandt, T. (2000). How to fit a response time distribution.Psychonomic Bulletin & Review,7,424–465.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2004

Authors and Affiliations

  • Andrew Heathcote
    • 1
    Email author
  • Scott Brown
    • 2
  • Denis Cousineau
    • 3
  1. 1.School of Behavioural Sciences, Aviation BuildingUniversity of NewcastleCallaghanAustralia
  2. 2.University of CaliforniaIrvine
  3. 3.Université de MontréalMontréalCanada

Personalised recommendations