A breadth-first survey of eye-tracking applications

Article

Abstract

Eye-tracking applications are surveyed in a breadth-first manner, reporting on work from the following domains: neuroscience, psychology, industrial engineering and human factors, marketing/advertising, and computer science. Following a review of traditionally diagnostic uses, emphasis is placed on interactive applications, differentiating between selective and gaze-contingent approaches.

References

  1. Allopenna, P. D., Magnuson, J. S., &Tanenhaus, M. K. (1998). Tracking the time course of spoken word recognition using eye movements: Evidence for continuous mapping models.Journal of Memory & Language,38, 419–439.CrossRefGoogle Scholar
  2. Anders, G. (2001). Pilot’s attention allocation during approach and landing—eye- and head-tracking research in an A330 full flight simulator. InProceedings of the 11th International Symposium on Aviation Psychology. Retrieved July 12, 2002, from http://www.geerdanders.de/literatur/2001_ohio.html.Google Scholar
  3. Anderson, J. R. (1993).Rules of the mind. Hillsdale, NJ: Erlbaum.Google Scholar
  4. Asaad, W. F., Rainer, G., &Miller, E. K. (2000). Task-specific neural activity in the primate prefrontal cortex.Neurophysiology,84, 451–459.PubMedGoogle Scholar
  5. Ballard, D. H., Hayhoe, M. M., &Pelz, J. B. (1995). Memory representations in natural tasks.Journal of Cognitive Neuroscience,7, 66–80.CrossRefGoogle Scholar
  6. Bertera, J. H., &Rayner, K. (2000). Eye movements and the span of the effective stimulus in visual search.Perception & Psychophysics,62, 576–585.CrossRefGoogle Scholar
  7. Buswell, G. T. (1935).How people look at pictures. Chicago: University of Chicago Press.Google Scholar
  8. Byrne, M. D., Anderson, J.R., Douglass, S., &Matessa, M. (1999). Eye tracking the visual search of click-down menus. InHuman factors in computing systems: CHI ’99 conference proceedings (pp. 402–409). New York: ACM Press.Google Scholar
  9. Chapman, P. R., &Underwood, G. (1998). Visual search of dynamic scenes: Event types and the role of experience in viewing driving situations. In G. Underwood (Ed.),Eye guidance in reading and scene perception (pp. 369–394). Amsterdam: Elsevier.CrossRefGoogle Scholar
  10. Clarke, J. H. (1976). Hierarchical geometric models for visible surface algorithms.Communications of the ACM,19, 547–554.CrossRefGoogle Scholar
  11. Cooper, R. M. (1974). The control of eye fixation by the meaning of spoken language: A new methodology for the real-time investigation of speech perception, memory, and language processing.Cognitive Psychology,6, 84–107.CrossRefGoogle Scholar
  12. Crundall, D. E., Underwood, G., &Chapman, P. R. (1998). How much do novice drivers see? The effects of demand on visual search strategies in novice and experienced drivers. In G. Underwood (Ed.),Eye guidance in reading and scene perception (pp. 395–418). Amsterdam: Elsevier.CrossRefGoogle Scholar
  13. Danforth, R., Duchowski, A., Geist, R., &McAliley, E. (2000). A platformfor gaze-contingent virtual environments. InSmart graphics (Papers from the 2000 AAAI spring symposium, Tech. Rep. SS-00-04, pp. 66–70). Menlo Park, CA: AAAI.Google Scholar
  14. DeCarlo, D., &Santella, A. (2002). Stylization and abstraction of photographs.Transaction on Graphics,21, 769–776.Google Scholar
  15. Dishart, D. C., &Land, M. F. (1998). The development of the eye movement strategies of learner drivers. In G. Underwood (Ed.),Eye guidance in reading and scene perception (pp. 419–430). Amsterdam: Elsevier.CrossRefGoogle Scholar
  16. Doll, T. J. (1993). Preattentive processing in visual search. InProceedings of the Human Factors and Ergonomics Society, 37th annual meeting (pp. 1291–1249). Santa Monica, CA: Human Factors & Ergonomics Society.Google Scholar
  17. Doll, T. J., Whorter, S. W., &Schmieder, D. E. (1993). Simulation of human visual search in cluttered backgrounds. InProceedings of the Human Factors and Ergonomics Society, 37th annual meeting (pp. 1310–1314). Santa Monica, CA: Human Factors & Ergonomics Society.Google Scholar
  18. Drury, C. G., Gramopadhye, A. K., &Sharit, J. (1997). Feedback strategies for visual inspection in airframe structural inspection.International Journal of Industrial Ergonomics,19, 333–344.PubMedCrossRefGoogle Scholar
  19. Duchowski, A. T. (2003).Eye tracking methodology: Theory & practice. London: Springer-Verlag.Google Scholar
  20. Duchowski, A. T., Medlin, E., Gramopadhye, A., Melloy, B., &Nair, S. (2001). Binocular eye tracking in VR for visual inspection training. InVirtual reality software & technology (VRST). New York: ACM Press.Google Scholar
  21. D’Ydewalle, G., Desmet, G., &Van Rensbergen, J. (1998). Film perception: The processing of film cuts. In G. Underwood (Ed.),Eye guidance in reading and scene perception (pp. 357–368). Amsterdam: Elsevier.CrossRefGoogle Scholar
  22. Findlay, J. M. (1997). Saccade target selection during visual search.Vision Research,37, 617–631.PubMedCrossRefGoogle Scholar
  23. Findlay, J. M., &Gilchrist, I. D. (1998). Eye guidance and visual search. In G. Underwood (Ed.),Eye guidance in reading and scene perception (pp. 295–312). Amsterdam: Elsevier.CrossRefGoogle Scholar
  24. Findlay, J. M., &Walker, R. (1999). A model of saccade generation based on parallel processing and competitive inhibition.Behavioral & Brain Sciences,22, 661–721.Google Scholar
  25. Funkhouser, T. A., &Séquin, C. H. (1993). Adaptive display algorithm for interactive frame rates during visualization of complex virtual environments. InComputer Graphics (SIGGRAPH ’93) (pp. 247–254). New York: ACM Press.Google Scholar
  26. Goldberg, J. H., &Kotval, X. P. (1999). Computer interface evaluation using eye movements: Methods and constructs.International Journal of Industrial Ergonomics,24, 631–645.CrossRefGoogle Scholar
  27. Goldberg, J. H., Stimson, M. J., Lewnstein, M., Scott, N., &Wichansky, A. M. (2002). Eye tracking in Web search tasks: Design implications. InProceedings of the symposium, on eye tracking research & applications (ETRA) 2002 (pp. 51–58). New York: ACM Press.Google Scholar
  28. Graeber, D. A., & Andre, A. D. (1999). Assessing visual attention of pilots while using electronic moving maps for taxiing. In R. S. Jensen, B. Cox, J. D. Callister, & R. Lavis (Eds.),Proceedings of the Tenth International Symposium on Aviation Psychology (pp. 791–796).Google Scholar
  29. Greene, H. H., &Rayner, K. (2001). Eye movements and familiarity effects in visual search.Vision Research,41, 3763–3773.PubMedCrossRefGoogle Scholar
  30. Hayhoe, M. M., Ballard, D. H., Triesch, J., Shinoda, H., Aivar, P., &Sullivan, B. (2002). Vision in natural and virtual environments. InProceedings of the symposium on eye tracking research & applications (ETRA) 2002 (pp. 7–13). New York: ACM Press.Google Scholar
  31. Henderson, J. M. (1992). Object identification in context: The visual processing of natural scenes.Canadian Journal of Psychology,46, 319–341.PubMedCrossRefGoogle Scholar
  32. Henderson, J. M., &Hollingworth, A. (1998). Eye movements during scene viewing: An overview. In G. Underwood (Ed.),Eye guidance in reading and scene perception (pp. 269–294). Amsterdam: Elsevier.CrossRefGoogle Scholar
  33. Ho, G., Scialfa, C. T., Caird, J. K., &Graw, T. (2001). Visual search for traffic signs: The effects of clutter, luminance, and aging.Human Factors,43, 194–207.PubMedCrossRefGoogle Scholar
  34. Hornof, A. J., &Kieras, D. E. (1997). Cognitive modeling reveals menu search is both random and systematic. InHuman factors in computing systems: CHI ’97 conference proceedings (pp. 107–144). New York: ACM Press.CrossRefGoogle Scholar
  35. Hughes, H. C., Nozawa, G., &Kitterle, F. (1996). Global precedence, spatial frequency channels, and the statistics of natural images.Journal of Cognitive Neuroscience,8, 197–230.CrossRefGoogle Scholar
  36. Jacob, R. J. (1990). What you look at is what you get: Eye movement-based interaction techniques. InHuman factors in computing systems: CHI ’90 conference proceedings (pp. 11–18). New York: ACM Press.Google Scholar
  37. Kanizsa, G. (1976, April). Subjective contours.Scientific American,234, 48–52, 138.PubMedCrossRefGoogle Scholar
  38. Kennedy, A. (1992). The spatial coding hypothesis. In K. Rayner (Ed.),Eye movements and visual cognition: Scene perception and reading (pp. 379–396). New York: Springer-Verlag.Google Scholar
  39. Kieras, D., &Meyer, D. E. (1995).An overview of the EPIC architecture for cognition and performance with application to human-computer interaction (EPIC Tech. Rep. No. 5, No. TR-95/ONR-EPIC-5). Ann Arbor: University of Michigan, Electrical Engineering and Computer Science Department.Google Scholar
  40. Kroll, J. F. (1992). Making a scene: The debate about context effects for scenes and sentences. In K. Rayner (Ed.),Eye movements and visual cognition: Scene perception and reading (pp. 284–292). New York: Springer-Verlag.Google Scholar
  41. Land, M. F., &Hayhoe, M. (2001). In what ways do eye movements contribute to everyday activities.Vision Research,41, 3559–3565.PubMedCrossRefGoogle Scholar
  42. Land, M. F., Mennie, N., &Rusted, J. (1999). The roles of vision and eye movements in the control of activities of daily living.Perception,28, 1307–1432.CrossRefGoogle Scholar
  43. Levoy, M., &Whitaker, R. (1990). Gaze-directed volume rendering. InComputer Graphics (SIGGRAPH ’90) (pp. 217–223). New York: ACM Press.Google Scholar
  44. Loftus, G. R. (1981). Tachistoscopic simulations of eye fixations on pictures.Journal of Experimental Psychology: Human Learning & Memory,7, 369–376.CrossRefGoogle Scholar
  45. Lohse, G. L. (1997). Consumer eye movement patterns on Yellow Pages advertising.Journal of Advertising,26, 61–73.Google Scholar
  46. Loschky, L. C., &McConkie, G. W. (2000). User performance with gaze contingent multiresolutional displays. InProceedings of the symposium on eye tracking research and applications (ETRA) 2000 (pp. 97–103). New York: ACM Press.Google Scholar
  47. Luebke, D., &Erikson, C. (1997). View-dependent simplification of arbitrary polygonal environments. InComputer Graphics (SIGGRAPH ’97) (pp. 199–208). New York: ACM Press.Google Scholar
  48. Luebke, D., Hallen, B., Newfield, D., &Watson, B. (2000).Perceptually driven simplification using gaze-directed rendering (Tech. Rep. CS-2000-04). Charlottesville: University of Virginia.Google Scholar
  49. Majaranta, P., &Räihä, K.-J. (2002). Twenty years of eye typing: Systems and design issues. InEye tracking research & application: Proceedings of the symposium, on ETRA 2002 (pp. 15–22). New York: ACM Press.CrossRefGoogle Scholar
  50. McConkie, G. W., &Rayner, K. (1975). The span of the effective stimulus during a fixation in reading.Perception & Psychophysics,17, 578–586.CrossRefGoogle Scholar
  51. Megaw, E. D., &Richardson, J. (1979). Eye movements and industrial inspection.Applied Ergonomics,10, 145–154.PubMedCrossRefGoogle Scholar
  52. Molnar, F. (1981). About the role of visual exploration in aesthetics. In H. Day (Ed.),Advances in intrinsic motivation and aesthetics. New York: Plenum.Google Scholar
  53. Murphy, H., &Duchowski, A.T. (2001). Gaze-contingent level of detail. In J. Roberts (Ed.),Eurographics (short presentations) (pp. 219–228). Manchester, U.K.: University of Manchester.Google Scholar
  54. Necker, L. A. (1832). Observations on some remarkable optical phaenomena seen in Switzerland, and on an optical phaenomenon which occurs on viewing a figure or a crystal or geometrical solid.Philosophical Magazine & Journal of Science,1, 329–337.Google Scholar
  55. Noton, D., &Stark, L. (1971a). Eye movements and visual perception.Scientific American,224, 34–43.CrossRefGoogle Scholar
  56. Noton, D., &Stark, L. (1971b). Scanpaths in saccadic eye movements while viewing and recognizing patterns.Vision Research,11, 929–942.PubMedCrossRefGoogle Scholar
  57. Qhshima, T., Yamamoto, H., &Tamura, H. (1996). Gaze-directed adaptive rendering for interacting with virtual space. InProceedings of VRAIS ’96 (pp. 103–110). Los Alamitos, CA: IEEE Computer Society Press.Google Scholar
  58. O’Sullivan, C., &Dingliana, J. (2001). Collisions and perception.ACM Transactions on Graphics,20 (3), 151–168.CrossRefGoogle Scholar
  59. O’Sullivan, C., Dingliana, J., &Howlett, S. (2002). Gaze-contingent algorithms for interactive graphics. In J. Hyöna, R. Radach, & H. Deubel (Eds.),The mind’s eyes: Cognitive and applied aspects of eye movement research. Amsterdam: Elsevier.Google Scholar
  60. Ottati, W. L., Hickox, J. C., &Richter, J. (1999). Eye scan patterns of experienced and novice pilots during visual flight rules (VFR) navigation. InProceedings of the Human Factors and Ergonomics Society, 43rd annual meeting (pp. 66–70). Santa Monica, CA: Human Factors & Ergonomics Society.Google Scholar
  61. Özyurt, J., DeSouza, P., West, P., Rutschmann, R., & Greenlee, M. W. (2001, August).Comparison of cortical activity and oculomotor performance in the gap and step paradigms. Paper presented at the European Conference on Visual Perception (ECVP), Kusadasi, Turkey.Google Scholar
  62. Parkhurst, D. [J.], Gulurciello, E., &Niebur, E. (2000). Evaluating variable resolution displays with visual search: Task performance and eye movements. InEye tracking research & application: Proceedings of the symposium on eye tracking research and applications 2000 (pp. 105–109). New York: ACM Press.Google Scholar
  63. Parkhurst, D. J., & Niebur, E. (in press). Variable resolution displays: A theoretical, practical, and behavioral evaluation.Human Factors.Google Scholar
  64. Pelz, J. B., Canosa, R., &Babcock, J. (2000). Extended tasks elicit complex eye movement patterns. InProceedings of the symposium on eye tracking research and applications (ETRA) 2000 (pp. 37–43). New York: ACM Press.Google Scholar
  65. Posner, M. I., Snyder, C. R. R., &Davidson, B. J. (1980). Attention and the detection of signals.Journal of Experimental Psychology: General,109, 160–174.CrossRefGoogle Scholar
  66. Rayner, K. (1975). The perceptual span and peripheral cues in reading.Cognitive Psychology,7, 65–81.CrossRefGoogle Scholar
  67. Rayner, K. (Ed.) (1992).Eye movements and visual cognition: Scene perception and reading. New York: Springer-Verlag.Google Scholar
  68. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research.Psychological Bulletin,124, 372–422.PubMedCrossRefGoogle Scholar
  69. Rayner, K., &Bertera, J. H. (1979). Reading without a fovea.Science,206, 468–469.PubMedCrossRefGoogle Scholar
  70. Rayner, K., &Pollatsek, A. (1992). Eye movements and scene perception.Canadian Journal of Psychology,46, 342–376.PubMedCrossRefGoogle Scholar
  71. Rayner, K., Rotello, C. M., Stewart, A. J., Keir, J., &Duffy, S. A. (2001). Integrating text and pictorial information: Eye movements when looking at print advertisements.Journal of Experimental Psychology: Applied,7, 219–226.PubMedCrossRefGoogle Scholar
  72. Recarte, M. A., &Nunes, L. M. (2000). Effects of verbal and spatial-imagery tasks on eye fixations while driving.Journal of Experimental Psychology: Applied,6, 31–43.PubMedCrossRefGoogle Scholar
  73. Reddy, M. (1998). Specification and evaluation of level of detail selection criteria.Virtual Reality: Research, Development & Application,3, 132–143.CrossRefGoogle Scholar
  74. Reichle, E. D., Pollatsek, A., Fisher, D. L., &Rayner, K. (1998). Toward a model of eye movement control in reading.Psychological Review,105, 125–157.PubMedCrossRefGoogle Scholar
  75. Reingold, E. M., Charness, N., Pomplun, M., & Stampe, D. M. (in press). Visual span in expert chess players: Evidence from eye movements.Psychological Science.Google Scholar
  76. Reingold, E. M., &Loschky, L. C. (2002). Saliency of peripheral targets in gaze-contingent multiresolutional displays.Behavior Research Methods, Instruments, & Computers,34, 491–499.CrossRefGoogle Scholar
  77. Reingold, E. M., Loschky, L. C., McConkie, G. W., & Stampe, D. M. (in press). Gaze-contingent multi-resolutional displays: An integrative review.Human Factors.Google Scholar
  78. Robinson, D. A. (1968). The oculomotor control system: A review.Proceedings of the IEEE,56, 1032–1049.CrossRefGoogle Scholar
  79. Rosbergen, E., Wedel, M., & Pieters, R. (1990). Analyzing visual attention to repeated print advertising using scanpath theory (Tech. Rep. No. 97B32). University Library Groningen, SOM Research School.Google Scholar
  80. Schoonard, J. W., Gould, J. D., &Miller, L. A. (1973). Studies of visual inspection.Ergonomics,16, 365–379.CrossRefGoogle Scholar
  81. Sibert, L. E., &Jacob, R. J. (2000). Evaluation of eye gaze interaction. InHuman factors in computing systems: CHI 2000 conference proceedings (pp. 281–288). New York: ACM Press.Google Scholar
  82. Smeets, J. B. J., Hayhoe, H. M., &Ballard, D. H. (1996). Goal-directed arm movements change eye-head coordination.Experimental Brain Research,109, 434–440.CrossRefGoogle Scholar
  83. Snodderly, D. M., Kagan, I., &Gur, M. (2001). Selective activation of visual cortex neurons by fixational eye movements: Implications for neural coding.Visual Neuroscience,18, 259–277.PubMedCrossRefGoogle Scholar
  84. Solso, R. L. (1999).Cognition and the visual arts (3rd ed.). Cambridge, MA: MIT Press.Google Scholar
  85. Starker, I., &Bolt, R. A. (1990). A gaze-responsive self-disclosing display. InHuman factors in computing systems: CHI ’90 conference proceedings (pp. 3–9). New York: ACM Press.Google Scholar
  86. Tanriverdi, V., &Jacob, R. J. K. (2000). Interacting with eye movements in virtual environments. InHuman factors in computing systems: CHI 2000 conference proceedings (pp. 265–272). New York: ACM Press.Google Scholar
  87. Todd, S., &Kramer, A. F. (1993). Attentional guidance in visual attention. InProceedings of the Human Factors and Ergonomics Society, 37th annual meeting (pp. 1378–1382). Santa Monica, CA: Human Factors & Ergonomics Society.Google Scholar
  88. Treisman, A., &Gelade, G. (1980). Afeature integration theory of attention.Cognitive Psychology,12, 97–136.PubMedCrossRefGoogle Scholar
  89. Van Orden, K. F., &DiVita, J. (1993). Highlighting with flicker. InProceedings of the Human Factors and Ergonomics Society, 37th annual meeting (pp. 1300–1304). Santa Monica, CA: Human Factors & Ergonomics Society.Google Scholar
  90. Velichkovsky, B., Pomplun, M., &Reser, J. (1996). Attention and communication: Eye-movement-based research paradigms. In W. H. Zangemeister, H. S. Stiehl, & C. Freksa (Eds.),Visual attention & cognition (pp. 125–154). Amsterdam: Elsevier.CrossRefGoogle Scholar
  91. Vertegaal, R. (1999). The GAZE groupware system: Mediatingjoint attention in multiparty communication and collaboration. InHumanfactors in computing systems: CHI ’99 conference proceedings (pp. 294–301). New York: ACM Press.Google Scholar
  92. Vince, J. A. (1995).Virtual reality systems. Reading, MA: Addison-Wesley.Google Scholar
  93. Wang, M.-J. J., Lin, S.-C., &Drury, C. G. (1997). Training for strategy in visual search.Industrial Ergonomics,20, 101–108.CrossRefGoogle Scholar
  94. Watson, B., Walker, N., Hodges, L. F., &Worden, A. (1997). Managing level of detail through peripheral degradation: Effects on search performance with a head-mounted display.ACM Transactions on Computer—Human Interaction,4, 323–346.CrossRefGoogle Scholar
  95. Wedel, M., &Pieters, R. (2000). Eye fixations on advertisements and memory for brands: A model and findings.Marketing Science,19, 297–312.CrossRefGoogle Scholar
  96. Wolfe, J. M. (1993). Guided Search 2.0: The upgrade. InProceedings of the Human Factors and Ergonomics Society, 37th annual meeting (pp. 1295–1299). Santa Monica, CA: Human Factors & Ergonomics Society.Google Scholar
  97. Wolfe, J. M. (1994). Visual search in continuous, naturalistic stimuli.Vision Research,34, 1187–1195.PubMedCrossRefGoogle Scholar
  98. Wolfe, J. M., &Gancarz, G., (1996). Guided Search 3.0: A model of visual search catches up with Jay Enoch 40 years later. In V. Laksh-minarayanan (Ed.),Basic and clinical applications of vision science (pp. 189–192). Dordrecht: Kluwer.Google Scholar
  99. Wooding, D. S. (2002). Fixation maps: Quantifying eye-movement traces. InProceedings of the symposium, on eye tracking research & applications (ETRA) 2002 (pp. 31–36). New York: ACM Press.Google Scholar
  100. Yarbus, A. L. (1967).Eye movements and vision. New York: Plenum.Google Scholar
  101. Zhai, S., Morimoto, C., &Ihde, S. (1999). Manual and gaze inputcas-caded (MAGIC) pointing. InHuman factors in computing systems: CHI ’99 conference proceedings (pp. 246–353). New York: ACM Press.Google Scholar
  102. Zorin, D., & Schröder, P. (2000).Course 23: Subdivision for modeling and animation. New York. Retrieved December 30, 2000 at http://www.mrl.nyu.edu/dzorin/sig00course/.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2002

Authors and Affiliations

  1. 1.Department of Computer ScienceClemson UniversityClemson

Personalised recommendations