Skip to main content

The inverse fallacy: An account of deviations from Bayes’s theorem and the additivity principle

An Erratum to this article was published on 01 July 2002

Abstract

In judging posterior probabilities, people often answer with the inverse conditional probability—a tendency named theinverse fallacy. Participants (N=45) were given a series of probability problems that entailed estimating bothp(H\vbD) andp(≈,H\vbD). The findings revealed that deviations of participants’ estimates from Bayesian calculations and from the additivity principle could be predicted by the corresponding deviations of the inverse probabilities from these relevant normative benchmarks. Methodological and theoretical implications of the distinction between inverse fallacy and base-rate neglect and the generalization of the study of additivity to conditional probabilities are discussed.

References

  • Ayton, P. (1997). How to be incoherent and seductive: Bookmakers’ odds and support theory.Organizational Behavior & Human Decision Processes,72, 99–115.

    Article  Google Scholar 

  • Baratgin J., &Noveck, I. A. (2000). Not only base rates are neglected in the Engineer-Lawyer problem: An investigation of reasoners’ underutilization of complementarity.Memory & Cognition,28, 79–91.

    Article  Google Scholar 

  • Bar-Hillel, M. (1980). The base rate fallacy in probability judgments.Acta Psychologica,44, 211–233.

    Article  Google Scholar 

  • Cosmides, L., &Tooby, J. (1996). Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under uncertainty.Cognition,58, 1–73.

    Article  Google Scholar 

  • Dawes, R. M., Mirels, H. L., Gold, E., &Donahue, E. (1993). Equating inverse probabilities in implicit personality judgments.Psychological Science,4, 396–400.

    Article  Google Scholar 

  • Doherty, M. E., Mynatt, C. R., Tweney, R. D., &Schiavo, M. D. (1979). Pseudodiagnosticity.Acta Psychologica,43, 11–21.

    Article  Google Scholar 

  • Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine: Problems and opportunities. In D. Kahneman, P. Slovic, & A. Tversky (Eds.),Judgment under uncertainty: Heuristics and biases (pp. 249–267). Cambridge: Cambridge University Press.

    Google Scholar 

  • Evans, J. St. B. T. (1998). Matching bias in conditional reasoning: Do we understand it after 25 years?Thinking & Reasoning,4, 45–82.

    Article  Google Scholar 

  • Gavanski, I., &Hui, C. (1992). Natural sample spaces and uncertain belief.Journal of Personality & Social Psychology,63, 766–780.

    Article  Google Scholar 

  • Gigerenzer, G., &Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats.Psychological Review,102, 684–704.

    Article  Google Scholar 

  • Girotto, V., &Gonzalez, M. (2001). Solving probabilistic and statistical problems: A matter of information structure and question form.Cognition,78, 247–276.

    Article  PubMed  Google Scholar 

  • Hamm, R. M. (1993). Explanation for common responses to the blue/ green cab probabilistic inference word problem.Psychological Reports,72, 219–242.

    Google Scholar 

  • Hammerton, M. (1973). A case of radical probability estimation.Journal of Experimental Psychology,101, 252–254.

    Article  Google Scholar 

  • Hanita, M., Gavanski, I., &Fazio, R. H. (1997). Influencing probability judgments by manipulating the accessibility of sample spaces.Personality & Social Psychology Bulletin,23, 801–813.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1972). On prediction and judgment.ORI Research Monographs,12.

  • Kahneman, D., &Tversky, A. (1973). On the psychology of prediction.Psychological Review,80, 237–251.

    Article  Google Scholar 

  • Koehler, J. J. (1996a). The base rate fallacy reconsidered: Descriptive, normative and methodological challenges.Behavioral & Brain Sciences,19, 1–53.

    Article  Google Scholar 

  • Koehler, J. J. (1996b). On conveying the probative value of DNA evidence: Frequencies, likelihood ratios and error rates.University of Colorado Law Review,67, 859–886.

    Google Scholar 

  • Liu, A. Y. (1975). Specific information effect in probability estimation.Perceptual & Motor Skills,41, 475–478.

    Google Scholar 

  • Lyon, D., &Slovic, P. (1976). Dominance of accuracy information and neglect of base rates in probability estimation.Acta Psychologica,40, 287–298.

    Article  Google Scholar 

  • Macchi, L. (1995). Pragmatic aspects of the base rate fallacy.Quarterly Journal of Experimental Psychology,48A, 188–207.

    Google Scholar 

  • Macchi, L. (2000). Partitive formulation of information in probabilistic problems: Beyond heuristics and frequency format explanations.Organizational Behavior & Human Decision Processes,82, 217–236.

    Article  Google Scholar 

  • Macchi, L., Osherson, D., &Krantz, D. H. (1999). A note on superadditive probability judgment.Psychological Review,106, 210–214.

    Article  Google Scholar 

  • Meehl, P., &Rosen, A. (1955). Antecedent probability and the efficiency of psychometric signs of patterns, or cutting scores.Psychological Bulletin,52, 194–215.

    Article  PubMed  Google Scholar 

  • Pollard, P., &Evans, J. St. B. T. (1983). The role of representativeness in statistical inference. In J. St. B. T. Evans (Ed.),Thinking and reasoning (pp. 309–330). London: Routledge & Kegan Paul.

    Google Scholar 

  • Rottenstreich, Y., &Tversky, A. (1997). Unpacking, repacking, and anchoring: Advances in support theory.Psychological Review,104, 406–415.

    Article  PubMed  Google Scholar 

  • Sherman, S. J., &Corty, E. (1984). Cognitive heuristics. In R. S. Wyer & T. K. Srull (Eds.),Handbook of social cognition (Vol. 1, pp. 189–286). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Sherman, S. J., McMullen, M. N., &Gavanski, I. (1992). Natural sample spaces and the inversion of conditional judgments.Journal of Experimental Social Psychology,28, 401–421.

    Article  Google Scholar 

  • Skov, R. B., &Sherman, S. J. (1986). Information-gathering processes: Diagnosticity, hypothesis-confirmatory strategies, and perceived hypothesis confirmation.Journal of Experimental Social Psychology,22, 93–121.

    Article  Google Scholar 

  • Slowiaczek, L. M., Klayman, J., Sherman, S. J., &Skov, R. B. (1992). Information selection and use in hypothesis testing: What is a good question, and what is a good answer?Memory & Cognition,20, 392–405.

    Article  Google Scholar 

  • Thompson, W. C., &Schumann, E. L. (1987). Interpretation of statistical evidence in criminal trials: The prosecutor’s fallacy and the defense attorney’s fallacy.Law & Human Behavior,11, 167–187.

    Article  Google Scholar 

  • Tversky, A., &Kahneman, D. (1980). Causal schemata in judgments under uncertainty. In M. Fishbein (Ed.),Progress in social psychology (Vol. 1, pp. 49–72). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Tversky, A., &Koehler, D. J. (1994). Support theory: A nonextensional representation of subjective probability.Psychological Review,101, 547–567.

    Article  Google Scholar 

  • Wolfe, C. R. (1995). Information seeking on Bayesian conditional probability problems: A fuzzy-trace theory account.Journal of Behavioral Decision Making,8, 85–108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëlle Villejoubert.

Additional information

The data for this research were collected in 1999 at the Department of Psychology, University of Hertfordshire, Hatfield, United Kingdom while the first author was completing her doctoral thesis. Portions of this research were presented at the Fourth International Thinking Conference, Durham, United Kingdom.

Accepted by previous editorial team

An erratum to this article is available at http://dx.doi.org/10.3758/BF03196437.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Villejoubert, G., Mandel, D.R. The inverse fallacy: An account of deviations from Bayes’s theorem and the additivity principle. Mem Cogn 30, 171–178 (2002). https://doi.org/10.3758/BF03195278

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3758/BF03195278

Keywords

  • Sample Space
  • Inverse Probability
  • Bayesian Probability
  • Support Theory
  • Additivity Principle