Advertisement

Memory & Cognition

, Volume 30, Issue 1, pp 97–106 | Cite as

A multidimensional scaling approach to mental multiplication

  • Thomas L. Griffiths
  • Michael L. Kalish
Article

Abstract

Adults consistently make errors in solving simple multiplication problems. These errors have been explained with reference to the interference between similar problems. In this paper, we apply multidimensional scaling (MDS) to the domain of multiplication problems, to uncover their underlying similarity structure. A tree-sorting task was used to obtain perceived dissimilarity ratings. The derived representation shows greater similarity between problems containing larger operands and suggests thattie problems (e.g., 7 x 7) hold special status. A version of the generalized context model (Nosofsky, 1986) was used to explore the derived MDS solution. The similarity of multiplication problems made an important contribution to producing a model consistent with human performance, as did the frequency with which such problems arise in textbooks, suggesting that both factors may be involved in the explanation of errors.

Keywords

Multidimensional Scaling Problem Frequency Mental Multiplication Arithmetic Fact Generalize Context Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ashcraft, M. H. (1985). Is it farfetched that some of us remember our arithmetic facts?Journal for Research in Mathematics Education,16, 99–105.CrossRefGoogle Scholar
  2. Ashcraft, M. H. (1992). Cognitive arithmetic: A review of theory and data.Cognition,44, 75–106.CrossRefPubMedGoogle Scholar
  3. Ashcraft, M. H., &Christy, K. S. (1995). The frequency of arithmetic facts in elementary texts: Addition and multiplication in grades 16.Journal for Research in Mathematics Education,26, 396–421.CrossRefGoogle Scholar
  4. Benford, F. (1938). The law of anomalous numbers.Proceedings of the American Philosophical Society,78, 551–572.Google Scholar
  5. Campbell, J. I. D. (1987). Network interference and mental multiplication.Journal of Experimental Psychology: Learning, Memory, & Cognition,13, 109–123.CrossRefGoogle Scholar
  6. Campbell, J. I. D. (1994). Architectures for numerical cognition.Cognition,53, 1–44.CrossRefPubMedGoogle Scholar
  7. Campbell, J. I. D. (1995). Mechanisms of simple addition and multiplication: A modified network interference model and simulation.Mathematical Cognition,1, 121–164.Google Scholar
  8. Campbell, J. I. D. (1997). Reading-based interference in cognitive arithmetic.Canadian Journal of Experimental Psychology,51, 74–81.PubMedGoogle Scholar
  9. Campbell, J. I. D., &Graham, D. J. (1985). Mental multiplication skill: Structure, process and acquisition.Canadian Journal of Psychology,39, 338–366.CrossRefGoogle Scholar
  10. Campbell, J. I. D., &Oliphant, M. (1992). Representation and retrieval of arithmetic facts: A network interference model and simulation. In J. I. D. Campbell (Ed.),The nature and origins of mathematical skills (pp. 331–364). Amsterdam: Elsevier.CrossRefGoogle Scholar
  11. Campbell, J. I. D., &Tarling, D. P. M. (1996). Retrieval processes in arithmetic production and verification.Memory & Cognition,24, 156–172.CrossRefGoogle Scholar
  12. Coxon, A. P. M. (1982).The users guide to multidimensional scaling: With special reference to the MDS(X) library of computer programs. Exeter, NH: Heinemann.Google Scholar
  13. Dehaene, S. (1992). Varieties of numerical abilities.Cognition,44, 1–42.CrossRefPubMedGoogle Scholar
  14. Fendrich, D. W., Healy, A. F., &Bourne, L. E. (1993). Mental arithmetic: Training and retention of multiplication skill. In C. Izawa (Ed.),Cognitive psychology applied (pp. 111–133). Hillsdale, NJ: Erlbaum.Google Scholar
  15. Fillenbaum, S., &Rapoport, A. (1971).Structures in the subjective lexicon. New York: Academic Press.Google Scholar
  16. Geary, D. C., Widaman, K. F., &Little, T. D. (1986). Cognitive addition and multiplication: Evidence for a single memory network.Memory & Cognition,14, 478–487.CrossRefGoogle Scholar
  17. Graham, D. J., &Campbell, J. I. D. (1992). Network interference and number-fact retrieval: Evidence from childrens alphaplication.Canadian Journal of Psychology,46, 65–91.CrossRefPubMedGoogle Scholar
  18. Koshmider, J. W., &Ashcraft, M. H. (1991). The development of childrens mental multiplication skills.Journal of Experimental Child Psychology,51, 53–89.CrossRefGoogle Scholar
  19. Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning.Psychological Review,99, 22–44.CrossRefPubMedGoogle Scholar
  20. Kruskal, J. B., &Wish, M. (1978).Multidimensional scaling. Beverly Hills, CA: Sage.Google Scholar
  21. LeFevre, J., Bisanz, J., Daley, K. E., Buffone, L., Greenham, S.L., &Sadesky, G. S. (1996). Multiple routes to solution of single-digit multiplication problems.Journal of Experimental Psychology: General,125, 284–306.CrossRefGoogle Scholar
  22. Lewandowsky, S., &Newman, D. A. (1993). Chronometric scaling of numbers. In R. Steyer, K. F. Wender, & K. F. Widaman (Eds.),Psychometric methodology: Proceedings of the 7th European Meeting of the Psychometric Society in Trier (pp. 272–277). Stuttgart: Gustav Fischer Verlag.Google Scholar
  23. Luce, R. D. (1963). Detection and recognition. In R.D. Luce, R. R. Bush, & E. Galanter (Eds.),Handbook of mathematical psychology (pp. 103–189). New York: Wiley.Google Scholar
  24. McCloskey, M., Harley, W., &Sokol, S. M. (1991). Models of arithmetic fact retrieval: An evaluation in light of findings from normal and brain-damaged subjects.Journal of Experimental Psychology: Learning, Memory, & Cognition,17, 377–397.CrossRefGoogle Scholar
  25. Meagher, P. D., &Campbell, J. I. D. (1995). Effects of prime type and delay on multiplication priming: Evidence for a dual process model.Quarterly Journal of Experimental Psychology,48A, 801–821.Google Scholar
  26. Miller, K. F. (1992). What a number is: Mathematical foundations and developing number concepts. In J. I. D. Campbell (Ed.),The nature and origins of mathematical skills (pp. 3–38). Amsterdam: Elsevier.CrossRefGoogle Scholar
  27. Miller, K. [F.], &Gelman, R. (1983). The childs representation of number: A multidimensional scaling analysis.Child Development,54, 1470–1479.Google Scholar
  28. Miller, K. [F.], Perlmutter, M., &Keating, D. (1984). Cognitive arithmetic: Comparison of operations.Journal of Experimental Psychology: Learning, Memory, & Cognition,10, 46–60.CrossRefGoogle Scholar
  29. Nosofsky, R. M. (1986). Attention, similarity, and the identification categorization relationship.Journal of Experimental Psychology: General,115, 39–57.CrossRefGoogle Scholar
  30. Nosofsky, R. M. (1987). Attention and learning processes in the identification and categorization of integral stimuli.Journal of Experimental Psychology: Learning, Memory, & Cognition,13, 87–109.CrossRefGoogle Scholar
  31. Nosofsky, R. M. (1991a). Exemplar-based approach to relating categorization, identification, and recognition. In F. G. Ashby (Ed.),Multidimensional models of perception and cognition (pp. 363–393). Hillsdale, NJ: Erlbaum.Google Scholar
  32. Nosofsky, R. M. (1991b). Tests of an exemplar model for relating perceptual classification and recognition memory.Journal of Experimental Psychology: Human Perception & Performance,17, 3–27.CrossRefGoogle Scholar
  33. Parkman, J. M. (1972). Temporal aspects of simple multiplication and comparison.Journal of Experimental Psychology,95, 437–444.CrossRefGoogle Scholar
  34. Parkman, J. M., &Groen, G. J. (1971). Temporal aspects of simple addition and comparison.Journal of Experimental Psychology,89, 335–342.CrossRefGoogle Scholar
  35. Rhodes, G. (1985). Looking at faces: First-order and second-order features as determinants of facial appearance.Perception,17, 43–63.CrossRefGoogle Scholar
  36. Rickard, T. C., Healy, A. F., &Bourne, L. E., Jr. (1994). On the representation of arithmetic facts: Operand order, symbol, and operation transfer effects.Journal of Experimental Psychology: Learning, Memory, & Cognition,20, 1139–1153.CrossRefGoogle Scholar
  37. Shepard, R. N. (1980) Multidimensional scaling, tree-fitting, and clustering.Science,210, 390–398.CrossRefPubMedGoogle Scholar
  38. Shepard, R. N. (1987) Toward a universal law of generalization for psychological science.Science,237, 1317–1323.CrossRefPubMedGoogle Scholar
  39. Shepard, R. N., Kilpatric, D. W., &Cunningham, J. P. (1975). The internal representation of numbers.Cognitive Psychology,7, 82–138.CrossRefGoogle Scholar
  40. Stazyk, E. H., Ashcraft, M. H., &Hamann, M. S. (1982). A network approach to mental multiplication.Journal of Experimental Psychology: Learning, Memory, & Cognition,8, 320–335.CrossRefGoogle Scholar
  41. Wickens, T. D. (1989).Multiway contingency tables analysis for the social sciences. Hillsdale, NJ: Erlbaum.Google Scholar
  42. Zbrodoff, N. J. (1995). Why is 9 + 7 harder than 2 + 3? Strength and interference as explanations for the problem-size effect.Memory & Cognition,23, 689–700.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2002

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of Western AustraliaNedlandsAustralia

Personalised recommendations