The visual and haptic perception of natural object shape

Abstract

In this study, we evaluated observers’ ability to compare naturally shaped three-dimensional (3-D) objects, using their senses of vision and touch. In one experiment, the observers haptically manipulated 1 object and then indicated which of 12 visible objects possessed the same shape. In the second experiment, pairs of objects were presented, and the observers indicated whether their 3-D shape was thesame ordifferent. The 2 objects were presented either unimodally (vision-vision or haptic-haptic) or cross-modally (vision-haptic or haptic-vision). In both experiments, the observers were able to compare 3-D shape across modalities with reasonably high levels of accuracy. In Experiment 1, for example, the observers’ matching performance rose to 72% correct (chance performance was 8.3%) after five experimental sessions. In Experiment 2, small (but significant) differences in performance were obtained between the unimodal vision-vision condition and the two cross-modal conditions. Taken together, the results suggest that vision and touch have functionally overlapping, but not necessarily equivalent, representations of 3-D shape.

References

  1. Amedi, A., Malach, R., Hendler, T., Peled, S., &Zohary, E. (2001). Visuo-haptic object-related activation in the ventral visual pathway.Nature Neuroscience,4, 324–330.

    PubMed  Article  Google Scholar 

  2. Berkeley, G. (1963).A new theory of vision and other writings. New York: Dutton. (Original work published 1709)

    Google Scholar 

  3. Bülthoff, H. H., &Mallot, H. A. (1988). Integration of depth modules: Stereo and shading.Journal of the Optical Society of America A,5, 1749–1758.

    Article  Google Scholar 

  4. Caviness, J. A. (1962).The equivalence of visual and tactual stimulation for solid shape perception. Unpublished master’s thesis, Cornell University.

  5. Caviness, J. A. (1964).Visual and tactual perception of solid shape. Unpublished doctoral dissertation, Cornell University.

  6. Caviness, J. A., & Gibson, J. J. (1962, April).The equivalence of visual and tactual stimulation for the perception of solid forms. Paper presented at the meeting of the Eastern Psychological Association, Atlantic City, NJ.

  7. de Vries, S. C., Kappers, A. M. L., &Koenderink, J. J. (1993). Shape from stereo: A systematic approach using quadratic surfaces.Perception & Psychophysics,53, 71–80.

    Article  Google Scholar 

  8. Easton, R. D., Greene, A. J., &Srinivas, K. (1997). Transfer between vision and haptics: Memory for 2-D patterns and 3-D objects.Psychonomic Bulletin & Review,4, 403–410.

    Article  Google Scholar 

  9. Garbin, C. P. (1990). Visual-touch perceptual equivalence for shape information in children and adults.Perception & Psychophysics,48, 271–279.

    Article  Google Scholar 

  10. Garbin, C. P., &Bernstein, I. H. (1984). Visual and haptic perception of three-dimensional solid forms.Perception & Psychophysics,36, 104–110.

    Article  Google Scholar 

  11. Gibson, J. J. (1950). The perception of visual surfaces.American Journal of Psychology,63, 367–384.

    PubMed  Article  Google Scholar 

  12. Gibson, J. J. (1962). Observations on active touch.Psychological Review,69, 477–491.

    PubMed  Article  Google Scholar 

  13. Gibson, J. J. (1963). The useful dimensions of sensitivity.American Psychologist,18, 1–15.

    Article  Google Scholar 

  14. Gibson, J. J. (1966).The senses considered as perceptual systems. Boston: Houghton Mifflin.

    Google Scholar 

  15. Gibson, J. J. (1979).The ecological approach to visual perception. Boston: Houghton Mifflin.

    Google Scholar 

  16. James, T. W., Humphrey, G. K., Gati, J. S., Servos, P., Menon, R. S., &Goodale, M. A. (2002). Haptic study of three-dimensional objects activates extrastriate visual areas.Neuropsychologia,40, 1706–1714.

    PubMed  Article  Google Scholar 

  17. Klatzky, R. L., Lederman, S. J., &Metzger, V. A. (1985). Identifying objects by touch: An “expert system.”Perception & Psychophysics,37, 299–302.

    Article  Google Scholar 

  18. Koenderink, J. J., Kappers, A. M. L., Todd, J. T., Norman, J. F., &Phillips, F. (1996). Surface range and attitude probing in stereoscopically presented dynamic scenes.Journal of Experimental Psychology: Human Perception & Performance,22, 869–878.

    Article  Google Scholar 

  19. Lakatos, S., &Marks, L. E. (1999). Haptic form perception: Relative salience of local and global features.Perception & Psychophysics,61, 895–908.

    Article  Google Scholar 

  20. Luce, R. D. (1963). Detection and recognition. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.),Handbook of mathematical psychology (Vol. 1, pp. 103–189). New York: Wiley.

    Google Scholar 

  21. Lucretius Carus, T. (1950).Of the nature of things (W. E. Leonard, Trans.). New York: Dutton. (Original work published ∼58 B.C.)

    Google Scholar 

  22. Macmillan, N. A., &Creelman, C. D. (1991).Detection theory: A user’s guide. New York: Cambridge University Press.

    Google Scholar 

  23. Marks, L. E. (1978).The unity of the senses: Interrelations among the modalities. New York: Academic Press.

    Google Scholar 

  24. Newell, F. N., Ernst, M. O., Tjan, B. S., &Bülthoff, H. H. (2001). Viewpoint dependence in visual and haptic object recognition.Psychological Science,12, 37–42.

    PubMed  Article  Google Scholar 

  25. Norman, J. F., Dawson, T. E., &Raines, S. R. (2000). The perception and recognition of natural object shape from deforming and static shadows.Perception,29, 135–148.

    PubMed  Article  Google Scholar 

  26. Norman, J. F., &Raines, S. R. (2002). The perception and discrimination of local 3-D surface structure from deforming and disparate boundary contours.Perception & Psychophysics,64, 1145–1159.

    Article  Google Scholar 

  27. Norman, J. F., &Todd, J. T. (1996). The discriminability of local surface structure.Perception,25, 381–398.

    PubMed  Article  Google Scholar 

  28. Norman, J. F., &Todd, J. T. (1998). Stereoscopic discrimination of interval and ordinal depth relations on smooth surfaces and in empty space.Perception,27, 257–272.

    PubMed  Article  Google Scholar 

  29. Norman, J. F., Todd, J. T., & Orban, G. (in press). Perception of 3D shape from specular highlights, deformations of shading, and other types of visual information.Psychological Science.

  30. Norman, J. F., Todd, J. T., &Phillips, F. (1995). The perception of surface orientation from multiple sources of optical information.Perception & Psychophysics,57, 629–636.

    Article  Google Scholar 

  31. Pont, S. C., Kappers, A. M. L., &Koenderink, J. J. (1997). Haptic curvature discrimination at several regions of the hand.Perception & Psychophysics,59, 1225–1240.

    Article  Google Scholar 

  32. Pont, S. C., Kappers, A. M. L., &Koenderink, J. J. (1999). Similar mechanisms underlie curvature comparison by static and dynamic touch.Perception & Psychophysics,61, 874–894.

    Article  Google Scholar 

  33. Reales, J. M., &Ballesteros, S. (1999). Implicit and explicit memory for visual and haptic objects: Cross-modal priming depends on structural descriptions.Journal of Experimental Psychology: Learning, Memory, & Cognition,25, 644–663.

    Article  Google Scholar 

  34. Tittle, J. S., Norman, J. F., Perotti, V. J., &Phillips, F. (1998). The perception of scale-dependent and scale-independent surface structure from binocular disparity, texture, and shading.Perception,27, 147–166.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Farley Norman.

Additional information

Note—This article was accepted by the previous editorial team, headed by Neil Macmillan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Norman, J.F., Norman, H.F., Clayton, A.M. et al. The visual and haptic perception of natural object shape. Perception & Psychophysics 66, 342–351 (2004). https://doi.org/10.3758/BF03194883

Download citation

Keywords

  • Object Shape
  • Stimulus Object
  • Bell Pepper
  • Discrimination Accuracy
  • Haptic Perception