Perception & Psychophysics

, Volume 66, Issue 2, pp 342–351 | Cite as

The visual and haptic perception of natural object shape

  • J. Farley NormanEmail author
  • Hideko F. Norman
  • Anna Marie Clayton
  • Joann Lianekhammy
  • Gina Zielke


In this study, we evaluated observers’ ability to compare naturally shaped three-dimensional (3-D) objects, using their senses of vision and touch. In one experiment, the observers haptically manipulated 1 object and then indicated which of 12 visible objects possessed the same shape. In the second experiment, pairs of objects were presented, and the observers indicated whether their 3-D shape was thesame ordifferent. The 2 objects were presented either unimodally (vision-vision or haptic-haptic) or cross-modally (vision-haptic or haptic-vision). In both experiments, the observers were able to compare 3-D shape across modalities with reasonably high levels of accuracy. In Experiment 1, for example, the observers’ matching performance rose to 72% correct (chance performance was 8.3%) after five experimental sessions. In Experiment 2, small (but significant) differences in performance were obtained between the unimodal vision-vision condition and the two cross-modal conditions. Taken together, the results suggest that vision and touch have functionally overlapping, but not necessarily equivalent, representations of 3-D shape.


Object Shape Stimulus Object Bell Pepper Discrimination Accuracy Haptic Perception 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amedi, A., Malach, R., Hendler, T., Peled, S., &Zohary, E. (2001). Visuo-haptic object-related activation in the ventral visual pathway.Nature Neuroscience,4, 324–330.PubMedCrossRefGoogle Scholar
  2. Berkeley, G. (1963).A new theory of vision and other writings. New York: Dutton. (Original work published 1709)Google Scholar
  3. Bülthoff, H. H., &Mallot, H. A. (1988). Integration of depth modules: Stereo and shading.Journal of the Optical Society of America A,5, 1749–1758.CrossRefGoogle Scholar
  4. Caviness, J. A. (1962).The equivalence of visual and tactual stimulation for solid shape perception. Unpublished master’s thesis, Cornell University.Google Scholar
  5. Caviness, J. A. (1964).Visual and tactual perception of solid shape. Unpublished doctoral dissertation, Cornell University.Google Scholar
  6. Caviness, J. A., & Gibson, J. J. (1962, April).The equivalence of visual and tactual stimulation for the perception of solid forms. Paper presented at the meeting of the Eastern Psychological Association, Atlantic City, NJ.Google Scholar
  7. de Vries, S. C., Kappers, A. M. L., &Koenderink, J. J. (1993). Shape from stereo: A systematic approach using quadratic surfaces.Perception & Psychophysics,53, 71–80.CrossRefGoogle Scholar
  8. Easton, R. D., Greene, A. J., &Srinivas, K. (1997). Transfer between vision and haptics: Memory for 2-D patterns and 3-D objects.Psychonomic Bulletin & Review,4, 403–410.CrossRefGoogle Scholar
  9. Garbin, C. P. (1990). Visual-touch perceptual equivalence for shape information in children and adults.Perception & Psychophysics,48, 271–279.CrossRefGoogle Scholar
  10. Garbin, C. P., &Bernstein, I. H. (1984). Visual and haptic perception of three-dimensional solid forms.Perception & Psychophysics,36, 104–110.CrossRefGoogle Scholar
  11. Gibson, J. J. (1950). The perception of visual surfaces.American Journal of Psychology,63, 367–384.PubMedCrossRefGoogle Scholar
  12. Gibson, J. J. (1962). Observations on active touch.Psychological Review,69, 477–491.PubMedCrossRefGoogle Scholar
  13. Gibson, J. J. (1963). The useful dimensions of sensitivity.American Psychologist,18, 1–15.CrossRefGoogle Scholar
  14. Gibson, J. J. (1966).The senses considered as perceptual systems. Boston: Houghton Mifflin.Google Scholar
  15. Gibson, J. J. (1979).The ecological approach to visual perception. Boston: Houghton Mifflin.Google Scholar
  16. James, T. W., Humphrey, G. K., Gati, J. S., Servos, P., Menon, R. S., &Goodale, M. A. (2002). Haptic study of three-dimensional objects activates extrastriate visual areas.Neuropsychologia,40, 1706–1714.PubMedCrossRefGoogle Scholar
  17. Klatzky, R. L., Lederman, S. J., &Metzger, V. A. (1985). Identifying objects by touch: An “expert system.”Perception & Psychophysics,37, 299–302.CrossRefGoogle Scholar
  18. Koenderink, J. J., Kappers, A. M. L., Todd, J. T., Norman, J. F., &Phillips, F. (1996). Surface range and attitude probing in stereoscopically presented dynamic scenes.Journal of Experimental Psychology: Human Perception & Performance,22, 869–878.CrossRefGoogle Scholar
  19. Lakatos, S., &Marks, L. E. (1999). Haptic form perception: Relative salience of local and global features.Perception & Psychophysics,61, 895–908.CrossRefGoogle Scholar
  20. Luce, R. D. (1963). Detection and recognition. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.),Handbook of mathematical psychology (Vol. 1, pp. 103–189). New York: Wiley.Google Scholar
  21. Lucretius Carus, T. (1950).Of the nature of things (W. E. Leonard, Trans.). New York: Dutton. (Original work published ∼58 B.C.)Google Scholar
  22. Macmillan, N. A., &Creelman, C. D. (1991).Detection theory: A user’s guide. New York: Cambridge University Press.Google Scholar
  23. Marks, L. E. (1978).The unity of the senses: Interrelations among the modalities. New York: Academic Press.Google Scholar
  24. Newell, F. N., Ernst, M. O., Tjan, B. S., &Bülthoff, H. H. (2001). Viewpoint dependence in visual and haptic object recognition.Psychological Science,12, 37–42.PubMedCrossRefGoogle Scholar
  25. Norman, J. F., Dawson, T. E., &Raines, S. R. (2000). The perception and recognition of natural object shape from deforming and static shadows.Perception,29, 135–148.PubMedCrossRefGoogle Scholar
  26. Norman, J. F., &Raines, S. R. (2002). The perception and discrimination of local 3-D surface structure from deforming and disparate boundary contours.Perception & Psychophysics,64, 1145–1159.CrossRefGoogle Scholar
  27. Norman, J. F., &Todd, J. T. (1996). The discriminability of local surface structure.Perception,25, 381–398.PubMedCrossRefGoogle Scholar
  28. Norman, J. F., &Todd, J. T. (1998). Stereoscopic discrimination of interval and ordinal depth relations on smooth surfaces and in empty space.Perception,27, 257–272.PubMedCrossRefGoogle Scholar
  29. Norman, J. F., Todd, J. T., & Orban, G. (in press). Perception of 3D shape from specular highlights, deformations of shading, and other types of visual information.Psychological Science.Google Scholar
  30. Norman, J. F., Todd, J. T., &Phillips, F. (1995). The perception of surface orientation from multiple sources of optical information.Perception & Psychophysics,57, 629–636.CrossRefGoogle Scholar
  31. Pont, S. C., Kappers, A. M. L., &Koenderink, J. J. (1997). Haptic curvature discrimination at several regions of the hand.Perception & Psychophysics,59, 1225–1240.CrossRefGoogle Scholar
  32. Pont, S. C., Kappers, A. M. L., &Koenderink, J. J. (1999). Similar mechanisms underlie curvature comparison by static and dynamic touch.Perception & Psychophysics,61, 874–894.CrossRefGoogle Scholar
  33. Reales, J. M., &Ballesteros, S. (1999). Implicit and explicit memory for visual and haptic objects: Cross-modal priming depends on structural descriptions.Journal of Experimental Psychology: Learning, Memory, & Cognition,25, 644–663.CrossRefGoogle Scholar
  34. Tittle, J. S., Norman, J. F., Perotti, V. J., &Phillips, F. (1998). The perception of scale-dependent and scale-independent surface structure from binocular disparity, texture, and shading.Perception,27, 147–166.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2004

Authors and Affiliations

  • J. Farley Norman
    • 1
    Email author
  • Hideko F. Norman
    • 1
  • Anna Marie Clayton
    • 1
  • Joann Lianekhammy
    • 2
  • Gina Zielke
    • 3
  1. 1.Department of PsychologyWestern Kentucky UniversityBowling Green
  2. 2.University of KentuckyLexington
  3. 3.University of LouisvilleLouisville

Personalised recommendations