Perception & Psychophysics

, Volume 63, Issue 8, pp 1293–1313 | Cite as

The psychometric function: I. Fitting, sampling, and goodness of fit

  • Felix A. Wichmann
  • N. Jeremy Hill


The psychometric function relates an observer’s performance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. This paper, together with its companion paper (Wichmann & Hill, 2001), describes an integrated approach to (1) fitting psychometric functions, (2) assessing the goodness of fit, and (3) providing confidence intervals for the function’s parameters and other estimates derived from them, for the purposes of hypothesis testing. The present paper deals with the first two topics, describing a constrained maximum-likelihood method of parameter estimation and developing several goodness-of-fit tests. Using Monte Carlo simulations, we deal with two specific difficulties that arise when fitting functions to psychophysical data. First, we note that human observers are prone to stimulus-independent errors (orlapses). We show that failure to account for this can lead to serious biases in estimates of the psychometric function’s parameters and illustrate how the problem may be overcome. Second, we note that psychophysical data sets are usually rather small by the standards required by most of the commonly applied statistical tests. We demonstrate the potential errors of applying traditionalX 2 methods to psychophysical data and advocate use of Monte Carlo resampling techniques that do not rely on asymptotic theory. We have made available the software to implement our methods.


Root Mean Square Psychometric Function Deviance Residual Influential Observation Psychophysical Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Collett, D. (1991).Modeling binary data. New York: Chapman & Hall/CRC.Google Scholar
  2. Dobson, A. J. (1990).Introduction to generalized linear models. London: Chapman & Hall.Google Scholar
  3. Draper, N. R., & Smith, H. (1981).Applied regression analysis. New York: Wiley.Google Scholar
  4. Efron, B. (1979). Bootstrap methods: Another look at the jackknife.Annals of Statistics,7, 1–26.CrossRefGoogle Scholar
  5. Efron, B. (1982).The jackknife, the bootstrap and other resampling plans (CBMS-NSF Regional Conference Series in Applied Mathematics). Philadelphia: Society for Industrial and Applied Mathematics.Google Scholar
  6. Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation.American Statistician,37, 36–48.CrossRefGoogle Scholar
  7. Efron, B., & Tibshirani, R. J. (1993).An introduction to the bootstrap. New York: Chapman & Hall.Google Scholar
  8. Finney, D. J. (1952).Probit analysis (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  9. Finney, D. J. (1971).Probit analysis (3rd ed.). Cambridge: Cambridge University Press.Google Scholar
  10. Forster, M. R. (1999). Model selection in science: The problem of language variance.British Journal for the Philosophy of Science,50, 83–102.CrossRefGoogle Scholar
  11. Gelman, A. B., Carlin, J. S., Stern, H. S., & Rubin, D. B. (1995).Bayesian data analysis. New York: Chapman & Hall/CRC.Google Scholar
  12. Hämmerlin, G., & Hoffmann, K.-H. (1991).Numerical mathematics (L. T. Schumacher, Trans.). New York: Springer-Verlag.Google Scholar
  13. Harvey, L. O., Jr. (1986). Efficient estimation of sensory thresholds.Behavior Research Methods, Instruments, & Computers,18, 623–632.CrossRefGoogle Scholar
  14. Hinkley, D. V. (1988). Bootstrap methods.Journal of the Royal Statistical Society B,50, 321–337.Google Scholar
  15. Hoel, P. G. (1984).Introduction to mathematical statistics. New York: Wiley.Google Scholar
  16. Lam, C. F., Mills, J. H., & Dubno, J. R. (1996). Placement of observations for the efficient estimation of a psychometric function.Journal of the Acoustical Society of America,99, 3689–3693.PubMedCrossRefGoogle Scholar
  17. Leek, M. R., Hanna, T. E., & Marshall, L. (1992). Estimation of psychometric functions from adaptive tracking procedures.Perception & Psychophysics,51, 247–256.Google Scholar
  18. McCullagh, P., & Nelder, J. A. (1989).Generalized linear models. London: Chapman & Hall.Google Scholar
  19. McKee, S. P., Klein, S. A., & Teller, D. Y. (1985). Statistical properties of forced-choice psychometric functions: Implications of probit analysis.Perception & Psychophysics,37, 286–298.Google Scholar
  20. Nachmias, J. (1981). On the psychometric function for contrast detection.Vision Research,21, 215–223.PubMedCrossRefGoogle Scholar
  21. O’Regan, J. K., & Humbert, R. (1989). Estimating psychometric functions in forced-choice situations: Significant biases found in threshold and slope estimation when small samples are used.Perception & Psychophysics,45, 434–442.Google Scholar
  22. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992).Numerical recipes in C: The art of scientific computing (2nd ed.). New York: Cambridge University Press.Google Scholar
  23. Quick, R. F. (1974). A vector magnitude model of contrast detection.Kybernetik,16, 65–67.PubMedCrossRefGoogle Scholar
  24. Schmidt, F. L. (1996). Statistical significance testing and cumulative knowledge in psychology: Implications for training of researchers.Psychological Methods,1, 115–129.CrossRefGoogle Scholar
  25. Swanson, W. H., & Birch, E. E. (1992). Extracting thresholds from noisy psychophysical data.Perception & Psychophysics,51, 409–422.Google Scholar
  26. Treutwein, B. (1995). Adaptive psychophysical procedures.Vision Research,35, 2503–2522.PubMedGoogle Scholar
  27. Treutwein, B., & Strasburger, H. (1999). Fitting the psychometric function.Perception & Psychophysics,61, 87–106.Google Scholar
  28. Watson, A. B. (1979). Probability summation over time.Vision Research,19, 515–522.PubMedCrossRefGoogle Scholar
  29. Weibull, W. (1951). Statistical distribution function of wide applicability.Journal of Applied Mechanics,18, 292–297.Google Scholar
  30. Wichmann, F. A. (1999).Some aspects of modelling human spatial vision: Contrast discrimination. Unpublished doctoral dissertation, Oxford University.Google Scholar
  31. Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: II. Bootstrap-based confidence intervals and sampling.Perception & Psychophysics,63, 1314–1329.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2001

Authors and Affiliations

  1. 1.University of OxfordOxfordEngland

Personalised recommendations