Perception & Psychophysics

, Volume 63, Issue 5, pp 761–776 | Cite as

Covariation in individuals’ sensitivities to bitter compounds: Evidence supporting multiple receptor/transduction mechanisms

  • Jeannine F. Delwiche
  • Zivjena Buletic
  • Paul A. S. Breslin
Article

Abstract

People vary widely in their sensitivities to bitter compounds, but the intercorrelation of these sensitivities is unknown. Our goal was to investigate correlations as a function of individual sensitivities to several bitter compounds representative of different chemical classes and, from these correlations, infer the number and variety of potential bitterness transduction systems for these compounds. Twenty-six subjects rated and ranked quinine HCl, caffeine, (−)-epicatechin, tetralone, L-phenylalanine, L-tryptophan, magnesium sulfate, urea, sucrose octaacetate (SOA), denatonium benzoate, andn-propylthiouracil (PROP) for bitterness. By examining individual differences, ratings and rankings could be grouped into two general clusters—urea/phenylalanine/tryptophan/epicatechin, and quinine/caffeine/SOA/denatonium benzoate/tetralone/magnesium sulfate—none of which contained PROP. When subjects were grouped into the extremes of sensitivity to PROP, a significant difference was found in the bitterness ratings, but not in the rankings. Therefore, there are also subjects who possess diminished absolute sensitivity to bitter stimuli but do not differ from other subjects in their relative sensitivities to these compounds.

References

  1. Adler, E., Hoon, M. A., Mueller, K. L., Chandrashekar, J., Ryba, N. J. P., &Zuker, C. S. (2000). A novel family of mammalian taste receptors.Cell,100, 693–702.PubMedCrossRefGoogle Scholar
  2. Arvidson, K., &Friberg, U. (1980). Human taste: Response and taste bud number in fungiform papillae.Science,209, 807–808.PubMedCrossRefGoogle Scholar
  3. Barnicot, N. A., Harris, H., &Kalmus, H. (1951). Taste thresholds of further eighteen compounds and their correlation with P.T.C. thresholds.Annals of Eugenics,16, 119–128.PubMedGoogle Scholar
  4. Bartoshuk, L. M. (1979). Bitter taste of saccharin related to the genetic ability to taste the bitter substance 6-n-propylthiouracil.Science,205, 934–935.PubMedCrossRefGoogle Scholar
  5. Bartoshuk, L.M., Cunningham, K. E., Dabrila, G.M., Duffy, V.B., Etter, L., Fast, K. R., Lucchina, L.A., Prutkin, J.M., &Snyder, D. J. (1999). From sweets to hot peppers: Genetic variation in taste, oral pain, and oral touch. In G. A. Bell & A. J. Watson (Eds.),Tastes & aromas (pp. 12–22). Sydney: University of New South Wales Press.Google Scholar
  6. Bartoshuk, L. M., Duffy, V. B., &Miller, I. J. (1994). PTC/PROP tasting: Anatomy, psychophysics, and sex effects.Physiology & Behavior,56, 1165–1171.CrossRefGoogle Scholar
  7. Bartoshuk, L. M., Duffy, V. B., Reed, D., &Williams, A. (1996). Supertasting, earaches and head injury: Genetics and pathology alter our taste worlds.Neuroscience & Biobehavioral Review,20, 79–87.CrossRefGoogle Scholar
  8. Bartoshuk, L. M., Rifkin, B., Marks, L. E., &Hooper, J. E. (1988). Bitterness of KCl and benzoate: Related to genetic status for sensitivity to PTC/PROP.Chemical Senses,13, 517–528.CrossRefGoogle Scholar
  9. Belitz, H.-D., &Wieser, H. (1985). Bitter compounds: Occurrence and structure-activity relationships.Food Reviews International,1, 271–354.CrossRefGoogle Scholar
  10. Bi, J., &O’Mahony, M. (1995). Table for testing the significance of the R-index.Journal of Sensory Studies,10, 341–347.CrossRefGoogle Scholar
  11. Boughter, J. D., Jr., &Whitney, G. (1993). Human taste thresholds for sucrose octaacetate.Chemical Senses,18, 445–448.CrossRefGoogle Scholar
  12. Boughter, J. D., Jr., &Whitney, G. (1998). Behavioral specificity of the bitter taste gene Soa.Physiology & Behavior,63, 101–108.CrossRefGoogle Scholar
  13. Brand, J. G. (1997). Biophysics of taste. In G. K. Beauchamp & L. Bartoshuk (Eds.),Tasting and smelling (2nd ed., pp. 1–24). San Diego: Academic Press.CrossRefGoogle Scholar
  14. Breslin, P.A., &Beauchamp, G. K. (1995). Suppression of bitterness by sodium: Variation among bitter taste stimuli.Chemical Senses,20, 609–623.PubMedCrossRefGoogle Scholar
  15. Caicedo, A., &Roper, S. D. (2001). Taste receptor cells that discriminate between bitter stimuli.Science,291, 1557–1560.PubMedCrossRefGoogle Scholar
  16. Capeless, C. G., Whitney, G., &Azen, E. A. (1992). Chromosome mapping of Soa, a gene influencing gustatory sensitivity to sucrose octaacetate in mice.Behavior Genetics,22, 655–663.PubMedCrossRefGoogle Scholar
  17. Chandrashekar, J., Mueller, K.L., Hoon, M.A., Adler, E., Feng, L., Guo, W., Zuker, C. S., &Ryba, N. J. P. (2000). T2Rs function as bitter taste receptors.Cell,100, 703–711.PubMedCrossRefGoogle Scholar
  18. Dahl, M., Erickson, R. P., &Simon, S.A. (1997). Neural responses to bitter compounds in rats.Brain Research,756, 22–34.PubMedCrossRefGoogle Scholar
  19. Fischer, R., &Griffin, F. (1963). Quinine dimorphism: A cardinal determinant of taste sensitivity.Nature,200, 343–347.PubMedCrossRefGoogle Scholar
  20. Frank, R. A., &Korchmar, D. L. (1985). Gustatory processing differences in PTC tasters and non-tasters: A reaction time analysis.Physiology & Behavior,35, 239–242.CrossRefGoogle Scholar
  21. Frank, R. A., Van der Klaauw, N. J., &Schifferstein, H. N. J. (1993). Both perceptual and conceptual factors influence taste—odor and taste—taste interactions.Perception & Psychophysics,54, 343–354.Google Scholar
  22. Gent, J. F., &Bartoshuk, L.M. (1983). Sweetness of sucrose, neohesperidin dihydrochalcone, and saccharin is related to genetic ability to taste the bitter substance 6-n-propylthiouracil.Chemical Senses,7, 265–272.CrossRefGoogle Scholar
  23. Green, B. G., Dalton, P., Cowart, B., Shaffer, G., Rankin, K., &Higgins, J. (1996). Evaluating the “Labeled Magnitude Scale” for measuring sensations of taste and smell.Chemical Senses,21, 323–334.PubMedCrossRefGoogle Scholar
  24. Green, B. G., Shaffer, G. S., &Gilmore, M. M. (1993). Derivation and evaluation of a semantic scale of oral sensation magnitude with apparent ratio properties.Chemical Senses,18, 683–702.CrossRefGoogle Scholar
  25. Guinard, J.-X., Hong, D.Y., Zoumas-Morse, C., Budwig, C., &Russell, G. F. (1994). Chemoreception and perception of the bitterness of isohumulones.Physiology & Behavior,56, 1257–1263.CrossRefGoogle Scholar
  26. Hall, M. J., Bartoshuk, L.M., Cain, W. S., &Stevens, J. C. (1975). PTC taste blindness and the taste of caffeine.Nature,253, 442–443.PubMedCrossRefGoogle Scholar
  27. Harder, D. B., Boughter, J. D., &Whitney, G. (1996). PTCavoidance polymorphism and other bitter-avoidance differences among mice in long-term preference tests.Chemical Senses,21, 612.CrossRefGoogle Scholar
  28. Harder, D. B., Gannon, K. S., &Whitney, G. (1996). SW.B6-Soab nontaster congenic strains completed and a sucrose octaacetate congenic quartet tested with other bitters.Chemical Senses,21, 507–517.PubMedCrossRefGoogle Scholar
  29. Harder, D. B., &Whitney, G. (1998). A common polygenic basis for quinine and PROP avoidance in mice.Chemical Senses,23, 327–332.PubMedCrossRefGoogle Scholar
  30. Harder, D.B., Whitney, G., Frye, P., Smith, J. C., &Rashotte, M. E. (1984). Strain differences among mice in taste psychophysics of sucrose octa-acetate.Chemical Senses,9, 311–323.CrossRefGoogle Scholar
  31. Harris, H., &Kalmus, H. (1949). Chemical specif icity in genetical differences of taste sensitivity.Annals of Eugenics,15, 32–45.PubMedGoogle Scholar
  32. Jefferson, S. C., &Erdman, A.M. (1970). Taste sensitivity and food aversions of teenagers.Journal of Home Economics,62, 605–608.Google Scholar
  33. Kemp, S. E., &Birch, G.G. (1992). An intensity/time study of the taste of amino acids.Chemical Senses,17, 151–168.CrossRefGoogle Scholar
  34. Lawless, H. T. (1979). The taste of creatine and creatinine.Chemical Senses & Flavour,4, 249–258.CrossRefGoogle Scholar
  35. Lawless, H. T., &Clark, C. C. (1992). Psychological biases in time-intensity scaling.Food Technology,46, 1992.Google Scholar
  36. Leach, E. J., &Noble, A. C. (1986). Comparison of bitterness of caffeine and quinine by a time-intensity procedure.Chemical Senses,11, 339–345.CrossRefGoogle Scholar
  37. Matsunami, H., Montmayeur, J.-P., &Buck, L. B. (2000). A family of candidate taste receptors in human and mouse.Nature,404, 601–604.PubMedCrossRefGoogle Scholar
  38. McBurney, D.H., Smith, D.V., &Shick, T. R. (1972). Gustatory cross adaptation: Sourness and bitterness.Perception & Psychophysics,11, 228–232.Google Scholar
  39. Mela, D. J. (1989). Bitter taste intensity: The effect of tastant and thiourea taster status.Chemical Senses,14, 131–135.CrossRefGoogle Scholar
  40. Mela, D. J. (1990). Gustatory perception of isohumulones: Influence of sex and thiourea taster status.Chemical Senses,15, 485–490.CrossRefGoogle Scholar
  41. Miller, I. J., Jr., &Whitney, G. (1989). Sucrose octaacetate-taster mice have more vallate taste buds than non-tasters.Neuroscience Letters,100, 1–3.CrossRefGoogle Scholar
  42. O’Mahony, M. (1992). Understanding discrimination tests: A user-friendly treatment of response bias, rating and ranking R-index tests and their relationship to signal detection.Journal of Sensory Studies,7, 1–47.CrossRefGoogle Scholar
  43. O’Mahony, M., Thieme, U., &Goldstein, L. R. (1988). The warm-up effect as a means of increasing the discriminability of sensory difference tests.Journal of Food Science,53, 1848–1850.CrossRefGoogle Scholar
  44. Reed, D. R., Bartoshuk, L.M., Duffy, V., Marino, S., &Price, R.A. (1995). Propylthiouracil tasting: Determination of underlying threshold distributions using maximum likelihood.Chemical Senses,20, 529–533.PubMedCrossRefGoogle Scholar
  45. Schifferstein, H. N. J., &Frijters, J. E. R. (1991). The perception of the taste of KCl, NaCl, and quinine HCl is not related to PROP-sensitivity.Chemical Senses,16, 303–317.CrossRefGoogle Scholar
  46. Schiffman, S. S., Gatlin, L.A., Frey, A. E., Heiman, S.A., Stagner, W.C., &Cooper, D.C. (1994). Taste perception of bitter compounds in young and elderly persons: Relation to lipophilicity of bitter compounds.Neurobiology of Aging,15, 743–750.PubMedCrossRefGoogle Scholar
  47. Shingai, T., &Beidler, L. M. (1985). Interstrain differences in bitter taste responses in mice.Chemical Senses,10, 51–55.CrossRefGoogle Scholar
  48. Smith, D. V. (1971). Taste intensity as a function of areas and concentration: Differentiation between compounds.Journal of Experimental Psychology,87, 163–171.PubMedCrossRefGoogle Scholar
  49. Spielman, A. I., Huque, T., Whitney, G., &Brand, J. G. (1992). The diversity of bitter taste signal transduction mechanisms. In D. P. Corey & S. D. Roper (Eds.),Sensory transduction (pp. 308–324). New York: Rockerfeller University Press.Google Scholar
  50. Thieme, U., &O’Mahony, M. (1990). Modifications to sensory difference test protocols: The warmed up paired comparison, the single standard duo—trio and the A—not A test modified for response bias.Journal of Sensory Studies,5, 159–176.CrossRefGoogle Scholar
  51. Thorngate, J. H., III (1997). Factors affecting the perception of bitterness: A review. In G. Roy (Ed.),Modifying bitterness: Mechanisms, ingredients, and applications (pp. 139–160). Valhalla, NY: Technomic Publishing.Google Scholar
  52. Whitney, G., &Harder, D. B. (1994). Genetics of bitter perception in mice.Physiology & Behavior,56, 1141–1147.CrossRefGoogle Scholar
  53. Yokomukai, Y., Cowart, B. J., &Beauchamp, G. K. (1993). Individual differences in sensitivity to bitter-tasting substances.Chemical Senses,18, 669–681.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2001

Authors and Affiliations

  • Jeannine F. Delwiche
    • 1
  • Zivjena Buletic
    • 2
  • Paul A. S. Breslin
    • 2
  1. 1.Ohio State UniversityColumbus
  2. 2.Monell Chemical Senses CenterPhiladelphia

Personalised recommendations