Working memory, math performance, and math anxiety

Abstract

The cognitive literature now shows how critically math performance depends on working memory, for any form of arithmetic and math that involves processes beyond simple memory retrieval. The psychometric literature is also very clear on the global consequences of mathematics anxiety. People who are highly math anxious avoid math: They avoid elective coursework in math, both in high school and college, they avoid college majors that emphasize math, and they avoid career paths that involve math. We go beyond these psychometric relationships to examine the cognitive consequences of math anxiety. We show how performance on a standardized math achievement test varies as a function of math anxiety, and that math anxiety compromises the functioning of working memory. High math anxiety works much like a dual task setting: Preoccupation with one’s math fears and anxieties functions like a resource-demanding secondary task. We comment on developmental and educational factors related to math and working memory, and on factors that may contribute to the development of math anxiety.

References

  1. Adams, J. W., &Hitch, G. J. (1997). Working memory and children’s mental addition.Journal of Experimental Child Psychology,67, 21–38.

    Article  PubMed  Google Scholar 

  2. Ashcraft, M. H., &Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance.Journal of Experimental Psychology: General,130, 224–237.

    Article  Google Scholar 

  3. Ashcraft, M. H., Krause, J. A., &Hopko, D. R. (2007). Is math anxiety a mathematical learning disability? In D. B. Berch & M. M. M. Mazzocco (Eds.),Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 329–348). Baltimore: Brookes.

    Google Scholar 

  4. Ashcraft, M. H., &Ridley, K. S. (2005). Math anxiety and its cognitive consequences: A tutorial review. In J. I. D. Campbell (Ed.),Handbook of mathematical cognition (pp. 315–327). New York: Psychology Press.

    Google Scholar 

  5. Ayres, P. L. (2001). Systematic mathematical errors and cognitive load.Contemporary Educational Psychology,26, 227–248.

    Article  PubMed  Google Scholar 

  6. Beilock, S. L., Kulp, C. A., Holt, L. E., &Carr, T. H. (2004). More on the fragility of performance: Choking under pressure in mathematical problem solving.Journal of Experimental Psychology: General,133, 584–600.

    Article  Google Scholar 

  7. Campbell, J. I. D. (Ed.) (2005).Handbook of mathematical cognition. New York: Psychology Press.

    Google Scholar 

  8. Campbell, J. I. D., &Charness, N. (1990). Age-related declines in working memory skills: Evidence from a complex calculation task.Developmental Psychology,26, 879–888.

    Article  Google Scholar 

  9. Campbell, J. I. D., &Xue, Q. (2001). Cognitive arithmetic across cultures.Journal of Experimental Psychology: General,130, 299–315.

    Article  Google Scholar 

  10. Faust, M. W., Ashcraft, M. H., &Fleck, D. E. (1996). Mathematics anxiety effects in simple and complex addition.Mathematical Cognition,2, 25–62.

    Article  Google Scholar 

  11. Fürst, A. J., &Hitch, G. J. (2000). Separate roles for executive and phonological components of working memory in mental arithmetic.Memory & Cognition,28, 774–782.

    Article  Google Scholar 

  12. Hamann, M. S., &Ashcraft, M. H. (1986). Textbook presentations of the basic addition facts.Cognition & Instruction,3, 173–192.

    Article  Google Scholar 

  13. Hecht, S. A. (2002). Counting on working memory in simple arithmetic when counting is used for problem solving.Memory & Cognition,30, 447–455.

    Article  Google Scholar 

  14. Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety.Journal for Research in Mathematics Education,21, 33–46.

    Article  Google Scholar 

  15. LeFevre, J.-A., DeStefano, D., Coleman, B., &Shanahan, T. (2005). Mathematical cognition and working memory. In J. I. D. Campbell (Ed.),Handbook of mathematical cognition (pp. 361–378). New York: Psychology Press.

    Google Scholar 

  16. LeFevre, J.-A., Sadesky, G. S., &Bisanz, J. (1996). Selection of procedures in mental addition: Reassessing the problem-size effect in adults.Journal of Experimental Psychology: Learning, Memory, & Cognition,22, 216–230.

    Article  Google Scholar 

  17. Logie, R. H., Gilhooly, K. J., &Wynn, V. (1994). Counting on working memory in arithmetic problem solving.Memory & Cognition,22, 395–410.

    Article  Google Scholar 

  18. Ma, L. (1999).Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Erlbaum.

    Google Scholar 

  19. Seyler, D. J., Kirk, E. P., &Ashcraft, M. H. (2003). Elementary subtraction.Journal of Experimental Psychology: Learning, Memory, & Cognition,29, 1339–1352.

    Article  Google Scholar 

  20. Siegler, R. S., &Booth, J. L. (2005). Development of numerical estimation. In J. I. D. Campbell (Ed.),Handbook of mathematical cognition (pp. 197–212). New York: Psychology Press.

    Google Scholar 

  21. Siegler, R. S., &Shrager, J. (1984). A model of strategy choice. In C. Sophian (Ed.),Origins of cognitive skills (pp. 229–293). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  22. Tronsky, L. N. (2005). Strategy use, the development of automaticity, and working memory involvement in complex multiplication.Memory & Cognition,33, 927–940.

    Article  Google Scholar 

  23. Turner, J. C., Midgley, C., Meyer, D. K., Gheen, M., Anderman, E. M., Kang, Y., &Patrick, H. (2002). The classroom environment and students’ reports of avoidance strategies in mathematics: A multimethod study.Journal of Educational Psychology,94, 88–106.

    Article  Google Scholar 

  24. Zbrodoff, N. J., &Logan, G. D. (2005). What everyone finds: The problem-size effect. In J. I. D. Campbell (Ed.),Handbook of mathematical cognition (pp. 331–345). New York: Psychology Press.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark H. Ashcraft.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ashcraft, M.H., Krause, J.A. Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review 14, 243–248 (2007). https://doi.org/10.3758/BF03194059

Download citation

Keywords

  • Mathematical Cognition
  • Work Memory Capacity
  • Dual Task
  • Math Performance
  • Mathematics Anxiety