Advertisement

Perception & Psychophysics

, Volume 69, Issue 6, pp 1009–1021 | Cite as

Perceptual learning in monocular pattern masking: Experiments and explanations by the twin summation gain control model of contrast processing

  • Goro MaeharaEmail author
  • Ken Goryo
Article
  • 246 Downloads

Abstract

We investigated practice effects on contrast thresholds for target patterns. Results showed that practice decreased contrast thresholds when targets were presented on maskers. Thresholds tended to decrease more at the higher end of the masker contrast range. At least partially, learning transferred to stimuli of the untrained phase. We simulated changes in threshold versus contrast functions using a contrast-processing model and then fit the model to pre- and posttraining data. The simulation results and model fit suggest that learning in pattern masking can be accounted for by changes in nonlinear transducer functions for divisive inhibitory signals.

Keywords

Spatial Frequency Perceptual Learning Learning Transfer Pattern Masking Contrast Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adini, Y., Sagi, D., &Tsodyks, M. (2002). Context-enabled learning in the human visual system.Nature,415, 790–793.PubMedGoogle Scholar
  2. Adini, Y., Wilkonsky, A., Haspel, R., Tsodyks, M., &Sagi, D. (2004). Perceptual learning in contrast discrimination: The effect of contrast uncertainty.Journal of Vision,4, 993–1005.PubMedCrossRefGoogle Scholar
  3. Ahissar, M., &Hochstein, S. (1998). Perceptual learning. In V. Walsh & J. Kulikowski (Eds.),Perceptual constancy: Why things look as they do (pp. 455–498). New York: Cambridge University Press.Google Scholar
  4. Ball, K., &Sekuler, R. (1987). Direction-specific improvement in motion discrimination.Vision Research,27, 953–965.PubMedCrossRefGoogle Scholar
  5. Dorais, A., &Sagi, D. (1997). Contrast masking effects change with practice.Vision Research,37, 1725–1733.PubMedCrossRefGoogle Scholar
  6. Dosher, B. A., &Lu, Z. L. (1999). Mechanisms of perceptual learning.Vision Research,39, 3197–3221.PubMedCrossRefGoogle Scholar
  7. Fahle, M., &Poggio, T. (2002).Perceptual learning. Cambridge, MA: MIT Press.Google Scholar
  8. Foley, J. M. (1994). Human luminance pattern-vision mechanisms: Masking experiments require a new model.Journal of the Optical Society of America A,11, 1710–1719.CrossRefGoogle Scholar
  9. Foley, J. M., &Chen, C. -C. (1999). Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: Threshold measurements and a model.Vision Research,39, 3855–3872.PubMedCrossRefGoogle Scholar
  10. Georgeson, M. A., &Meese, T. S. (2005). Binocular summation at contrast threshold: A new look.Perception,34(Suppl.), 138.Google Scholar
  11. Georgeson, M. A., &Scott-Samuel, N. E. (1999). Motion contrast: A new metric for direction discrimination.Vision Research,39, 4393–4402.PubMedCrossRefGoogle Scholar
  12. Gibson, E. J. (1963). Perceptual learning.Annual Review of Psychology,14, 29–56.PubMedCrossRefGoogle Scholar
  13. Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex.Visual Neuroscience,9, 181–197.PubMedCrossRefGoogle Scholar
  14. Legge, G. E., &Foley, J. M. (1980). Contrast masking in human vision.Journal of the Optical Society of America A,70, 1458–1471.CrossRefGoogle Scholar
  15. Levitt, H. (1971). Transformed up-down methods in psychoacoustics.Journal of the Acoustical Society of America,49, 467–477.PubMedCrossRefGoogle Scholar
  16. Maehara, G., &Goryo, K. (2005). Binocular, monocular, and dichoptic pattern masking.Optical Review,12, 76–82.CrossRefGoogle Scholar
  17. Meese, T. S., Georgeson, M. A., &Baker, D. H. (2006). Binocular contrast vision at and above threshold.Journal of Vision,6, 1224–1243.PubMedCrossRefGoogle Scholar
  18. Nachmias, J., &Sansbury, R. V. (1974). Grating contrast: Discrimination may be better than detection.Vision Research,14, 1039–1042.PubMedCrossRefGoogle Scholar
  19. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies.Spatial Vision,10, 437–442.PubMedCrossRefGoogle Scholar
  20. Pelli, D. G., &Zhang, L. (1991). Accurate control of contrast on microcomputer displays.Vision Research,31, 1337–1350.PubMedCrossRefGoogle Scholar
  21. Polat, U., &Sagi, D. (1993). Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments.Vision Research,33, 993–999.PubMedCrossRefGoogle Scholar
  22. Read, J. C. A., &Cumming, B. G. (2004). Understanding the cortical specialization for horizontal disparity.Neural Computation,16, 1983–2020.PubMedCrossRefGoogle Scholar
  23. Seitz, A. R., Yamagishi, N., Werner, B., Goda, N., Kawato, M., &Watanabe, T. (2005). Task-specific disruption of perceptual learning.Proceedings of the National Academy of Sciences,102, 14895–14900.CrossRefGoogle Scholar
  24. Shiu, L.-P., &Pashler, H. (1992). Improvement in line orientation discrimination is retinally local but dependent on cognitive set.Perception & Psychophysics,52, 582–588.Google Scholar
  25. Sowden, P. T., Rose, D., &Davies, I. R. L. (2002). Perceptual learning of luminance contrast detection: Specific for spatial frequency and retinal location but not orientation.Vision Research,42, 1249–1258.PubMedCrossRefGoogle Scholar
  26. Stone, L. S., &Thompson, P. (1992). Human speed perception is contrast dependent.Vision Research,32, 1535–1549.PubMedCrossRefGoogle Scholar
  27. Stromeyer, C. F., III, &Klein, S. (1974). Spatial frequency channels in human vision as asymmetric (edge) mechanisms.Vision Research,14, 1409–1420.PubMedCrossRefGoogle Scholar
  28. Swift, D. J., &Smith, R. A. (1983). Spatial frequency masking and Weber’s law.Vision Research,23, 495–505.PubMedCrossRefGoogle Scholar
  29. Yu, C., Klein, S. A., &Levi, D. M. (2004). Perceptual learning in contrast discrimination and the (minimal) role of context.Journal of Vision,4, 169–182.PubMedCrossRefGoogle Scholar
  30. Zenger, B., &Sagi, D. (1996). Isolating excitatory and inhibitory nonlinear spatial interactions involved in contrast detection.Vision Research,36, 2497–2513.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2007

Authors and Affiliations

  1. 1.Kyoto Women’s UniversityKyotoJapan
  2. 2.McGill Vision ResearchMontrealCanada

Personalised recommendations