Skip to main content

The role of first- and second-order stimulus features for human overt attention

Abstract

When processing complex visual input, human observers sequentially allocate their attention to different subsets of the stimulus. What are the mechanisms and strategies that guide this selection process? We investigated the influence of various stimulus features on human overt attention—that is, attention related to shifts of gaze with natural color images and modified versions thereof. Our experimental modifications, systematic changes of hue across the entire image, influenced only the global appearance of the stimuli, leaving the local features under investigation unaffected. We demonstrated that these modifications consistently reduce the subjective interpretation of a stimulus as “natural” across observers. By analyzing fixations, we found that first-order features, such as luminance contrast, saturation, and color contrast along either of the cardinal axes, correlated to overt attention in the modified images. In contrast, no such correlation was found in unmodified outdoor images. Second-order luminance contrast (“texture contrast”) correlated to overt attention in all conditions. However, although none of the second-order color contrasts were correlated to overt attention in unmodified images, one of the second-order color contrasts did exhibit a significant correlation in the modified images. These findings imply, on the one hand, that higher-order bottom-up effects—namely, those of second-order luminance contrast—may partially account for human overt attention. On the other hand, these results also demonstrate that global image properties, which correlate to the subjective impression of a scene being “natural,” affect the guidance of human overt attention

References

  1. Bach, M., Bouis, D., &Fischer, B. (1983). An accurate and linear infrared oculometer.Journal of Neuroscience Methods,9, 9–14.

    PubMed  Article  Google Scholar 

  2. Brainard, D. H. (1997). The Psychophysics Toolbox.Spatial Vision,10, 433–436.

    PubMed  Article  Google Scholar 

  3. Buswell, G. T. (1935).How people look at pictures: A study of the psychology of perception in art. Chicago: University of Chicago Press.

    Google Scholar 

  4. Derrington, A. M., Krauskopf, J., &Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque.Journal of Physiology,357, 241–265.

    PubMed  Google Scholar 

  5. Einhäuser, W., &König, P. (2003). Does luminance-contrast contribute to a saliency map for overt visual attention?European Journal of Neuroscience,17, 1089–1097.

    PubMed  Article  Google Scholar 

  6. Gegenfurtner, K. R., &Kiper, D. C. (2003). Color vision.Annual Review of Neuroscience,26, 181–206.

    PubMed  Article  Google Scholar 

  7. Gottlieb, J. P., Kusunoki, M., &Goldberg, M. E. (1998). The representation of visual salience in monkey parietal cortex.Nature,391, 481–484.

    PubMed  Article  Google Scholar 

  8. Henderson, J. M. (2003). Human gaze control during real-world scene perception.Trends in Cognitive Sciences,7, 498–504.

    PubMed  Article  Google Scholar 

  9. Horwitz, G. D., &Newsome, W. T. (1999). Separate signals for target selection and movement specification in the superior colliculus.Science,284, 1158–1161.

    PubMed  Article  Google Scholar 

  10. Itti, L., &Koch, C. (2001). Computational modelling of visual attention.Nature Reviews Neuroscience,2, 194–203.

    PubMed  Article  Google Scholar 

  11. Itti, L., Koch, C., &Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis.IEEE Transactions on Pattern Analysis & Machine Intelligence,20, 1254–1259.

    Article  Google Scholar 

  12. Koch, C., &Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry.Human Neurobiology,4, 219–227.

    PubMed  Google Scholar 

  13. Komatsu, H., Ideura, Y., Kaji, S., &Yamane, S. (1992). Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey.Journal of Neuroscience,12, 408–424.

    PubMed  Google Scholar 

  14. Krieger, G., Rentschler, I., Hauske, G., Schill, K., &Zetzsche, C. (2000). Object and scene analysis by saccadic eye-movements: An investigation with higher-order statistics.Spatial Vision,13, 201–214.

    PubMed  Article  Google Scholar 

  15. Kustov, A. A., &Robinson, D. L. (1996). Shared neural control of attentional shifts and eye movements.Nature,384, 74–77.

    PubMed  Article  Google Scholar 

  16. Land, M., Mennie, N., &Rusted, J. (1999). The roles of vision and eye movements in the control of activities of daily living.Perception,28, 1311–1328.

    PubMed  Article  Google Scholar 

  17. Li, Z. (2002). A saliency map in primary visual cortex.Trends in Cognitive Sciences,6, 9–16.

    PubMed  Article  Google Scholar 

  18. Mannan, S. K., Ruddock, K. H., &Wooding, D. S. (1996). The relationship between the locations of spatial features and those of fixations made during visual examination of briefly presented images.Spatial Vision,10, 165–188.

    PubMed  Article  Google Scholar 

  19. Mannan, S. K., Ruddock, K. H., &Wooding, D. S. (1997). Fixation patterns made during brief examination of two-dimensional images.Perception,26, 1059–1072.

    PubMed  Article  Google Scholar 

  20. Mazer, J. A., &Gallant, J. L. (2003). Goal-related activity in V4 during free viewing visual search: Evidence for a ventral stream visual salience map.Neuron,40, 1241–1250.

    PubMed  Article  Google Scholar 

  21. McPeek, R. M., &Keller, E. L. (2002). Superior colliculus activity related to concurrent processing of saccade goals in a visual search task.Journal of Neurophysiology,87, 1805–1815.

    PubMed  Google Scholar 

  22. Najemnik, J., &Geisler, W. S. (2005). Optimal eye movement strategies in visual search.Nature,434, 387–391.

    PubMed  Article  Google Scholar 

  23. Navalpakkam, V., &Itti, L. (2005). Modeling the influence of task on attention.Vision Research,45, 205–231.

    PubMed  Article  Google Scholar 

  24. Oliva, A., Torralba, A., Castelhano, M. S., &Henderson, J. M. (2003). Top-down control of visual attention in object detection. InProceedings of the 2003 International Conference on Image Processing (ICIP 2003) (Vol. 1, pp. 253–256). Washington, DC: IEEE Press.

    Google Scholar 

  25. Parkhurst, D. [J.], Law, K., &Niebur, E. (2002). Modeling the role of salience in the allocation of overt visual attention.Vision Research,42, 107–123.

    PubMed  Article  Google Scholar 

  26. Parkhurst, D. J., &Niebur, E. (2003). Scene content selected by active vision.Spatial Vision,16, 125–154.

    PubMed  Article  Google Scholar 

  27. Parkhurst, D. J., &Niebur, E. (2004). Texture contrast attracts overt visual attention in natural scenes.European Journal of Neuroscience,19, 783–789.

    PubMed  Article  Google Scholar 

  28. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies.Spatial Vision,10, 437–442.

    PubMed  Article  Google Scholar 

  29. Peters, R. J., Iyer, A., Itti, L., &Koch, C. (2005). Components of bottom-up gaze allocation in natural images.Vision Research,45, 2397–2416.

    PubMed  Article  Google Scholar 

  30. Posner, M. I., &Petersen, S. E. (1990). The attention system of the human brain.Annual Review of Neuroscience,13, 25–42.

    PubMed  Article  Google Scholar 

  31. Privitera, C. M., &Stark, L. W. (2000). Algorithms for defining visual regions-of-interest: Comparison with eye fixations.IEEE Transactions on Pattern Analysis & Machine Intelligence,22, 970–982.

    Article  Google Scholar 

  32. Reinagel, P., &Zador, A. M. (1999). Natural scene statistics at the centre of gaze.Network: Computation in Neural Systems,10, 341–350.

    Article  Google Scholar 

  33. Robinson, D. L., &Petersen, S. E. (1992). The pulvinar and visual salience.Trends in Neurosciences,15, 127–132.

    PubMed  Article  Google Scholar 

  34. Tatler, B. W., Baddeley, R. J., &Gilchrist, I. D. (2005). Visual correlates of fixation selection: Effects of scale and time.Vision Research,45, 643–659.

    PubMed  Article  Google Scholar 

  35. Thompson, K. G., Bichot, N. P., &Schall, J. D. (1997). Dissociation of visual discrimination from saccade programming in macaque frontal eye field.Journal of Neurophysiology,77, 1046–1050.

    PubMed  Google Scholar 

  36. Torralba, A. (2003). Modeling global scene factors in attention.Journal of the Optical Society of America A,20, 1407–1418.

    Article  Google Scholar 

  37. Walther, D., Edgington, D. R., &Koch, C. (2004). Detection and tracking of objects in underwater video. In2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’04) (Vol. 1, pp. 544–549). Washington, DC: IEEE Press.

    Chapter  Google Scholar 

  38. Yarbus, A. L. (1967).Eye movements and vision (B. Haigh, Trans.). New York: Plenum.

    Google Scholar 

  39. Zeki, S. (1983). The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex.Proceedings of the Royal Society of London: Series B,217, 449–470.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Frey.

Additional information

The work was financially supported by Honda RI Europe, EU/ BBW (“AMOUSE Project”), and the Swiss National Science Foundation (Grant PBEZ2-107367 to W.E.).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frey, HP., König, P. & Einhäuser, W. The role of first- and second-order stimulus features for human overt attention. Perception & Psychophysics 69, 153–161 (2007). https://doi.org/10.3758/BF03193738

Download citation

Keywords

  • Lateral Geniculate Nucleus
  • Grayscale Image
  • Color Contrast
  • Luminance Contrast
  • Outdoor Scene