Skip to main content

Binocular shape constancy from novel views: The role of a priori constraints

Abstract

We tested shape constancy from novel views in the case of binocular viewing, using a variety of stimuli, including polyhedra, polygonal lines, and points in 3-D. The results of the psychophysical experiments show that constraints such as planarity of surface contours and symmetry are critical for reliable shape constancy. These results are consistent with the results obtained in our previous psychophysical experiments on shape constancy from novel views in the presence of a kinetic depth effect (Pizlo & Stevenson, 1999). On the basis of these results, we developed a new model of binocular shape reconstruction. The model is based on the assumption that binocular reconstruction is a difficult inverse problem, whose solution requires imposing a priori constraints on the family of possible interpretations. In the model, binocular disparity is used to correct monocularly reconstructed shape. The new model was tested on the same shapes as those used in the psychophysical experiments. The reconstructions produced by this model are substantially more reliable than the reconstructions produced by models that do not use constraints. Interestingly, monocular (but not binocular) reconstructions produced by this model correlate well with both monocular and binocular performance of human subjects. This fact suggests that binocular and monocular reconstructions of shapes in the human visual system involve similar mechanisms based on monocular shape constraints.

References

  1. Anstis S. M. (1974). A chart demonstrating variations in acuity with retinal position.Vision Research,14, 589–592.

    PubMed  Article  Google Scholar 

  2. Attneave F., &Frost, R. (1969). The determination of perceived tridimensional orientation by minimum criteria.Perception & Psychophysics,6, 391–396.

    Article  Google Scholar 

  3. Biederman, I. (1987). Recognition by components: A theory of human image understanding.Psychological Review,94, 115–147.

    PubMed  Article  Google Scholar 

  4. Biederman, I., &Gerhardstein, P. C. (1993). Recognizing depthrotated objects: Evidence and conditions for three-dimensional viewpoint invariance.Journal of Experimental Psychology: Human Perception & Performance,19, 1162–1182.

    Article  Google Scholar 

  5. Chan, M. W. (1999).A psychologically plausible algorithm for binocular shape reconstruction. Unpublished doctoral dissertation, Purdue University.

  6. Chan, M. W., Pizlo, Z., &Chelberg, D. M. (1999). Binocular shape reconstruction: Psychological plausibility of the 8-point algorithm.Computer Vision & Image Understanding,74, 121–137.

    Article  Google Scholar 

  7. Faugeras, O. (1993).Three-dimensional computer vision: A geometric viewpoint. Cambridge, MA: MIT Press.

    Google Scholar 

  8. Hartley, R. I., &Sturm, P. (1997). Triangulation.Computer Vision & Image Understanding,68, 146–157.

    Article  Google Scholar 

  9. Hochberg, J., &Brooks, V. (1960). The psychophysics of form: Reversible perspective drawings of spatial objects.American Journal of Psychology,73, 337–355.

    PubMed  Article  Google Scholar 

  10. Hochberg, J., &McAlister, E. (1953). A quantitative approach to figural ‘goodness.’Journal of Experimental Psychology,46, 361–364.

    PubMed  Article  Google Scholar 

  11. Julesz, B. (1971).Foundations of cyclopean perception. Chicago: Chicago University Press.

    Google Scholar 

  12. Kersten, D., Mamassian, P., &Yuille, A. (2004). Object perception as Bayesian inference.Annual Review of Psychology,55, 271–304.

    PubMed  Article  Google Scholar 

  13. Koenderink, J. J., van Doorn, A. J., &Kappers, A. M. L. (1992). Surface perception in pictures.Perception & Psychophysics,52, 487–496.

    Article  Google Scholar 

  14. Leclerc, Y. G. (1989). Constructing simple stable descriptions for image partitioning.International Journal of Computer Vision,3, 73–102.

    Article  Google Scholar 

  15. Leclerc, Y. G., &Fischler, M. A. (1992). An optimization-based approach to the interpretation of single line drawings as 3-D wire frames.International Journal of Computer Vision,9, 113–136.

    Article  Google Scholar 

  16. Levi, D. M., &Klein, S. A. (1990). The role of separation and eccentricity in encoding position.Vision Research,30, 557–585.

    PubMed  Article  Google Scholar 

  17. Liu, Z., &Kersten, D. (2003). Three-dimensional symmetric shapes are discriminated more efficiently than asymmetric ones.Journal of the Optical Society of America A,20, 1331–1340.

    Article  Google Scholar 

  18. Longuet-Higgins, H. C. (1981). A computer algorithm for reconstructing a scene from two projections.Nature,293, 133–135.

    Article  Google Scholar 

  19. Macmillan, N. A., &Creelman, C. D. (2005).Detection theory: A user's guide (2nd ed.). Mahwah, NJ: Erlbaum.

    Google Scholar 

  20. Marill, T. (1991). Emulating the human interpretation of line-drawings as three-dimensional objects.International Journal of Computer Vision,6, 147–161.

    Article  Google Scholar 

  21. McKee, S. P., Levi, D. M., &Bowne, S. F. (1990). The imprecision of stereopsis.Vision Research,30, 1763–1779.

    PubMed  Article  Google Scholar 

  22. Mitchison, G. (1988). Planarity and segmentation in stereoscopic matching.Perception,17, 753–782.

    PubMed  Article  Google Scholar 

  23. Norman, J. F., Todd, J. T., Perotti, V. J., &Tittle, J. S. (1996). The visual perception of three-dimensional length.Journal of Experimental Psychology: Human Perception & Performance,22, 173–186.

    Article  Google Scholar 

  24. Perkins, D. N. (1972). Visual discrimination between rectangular and nonrectangular parallelopipeds.Perception & Psychophysics,12, 396–400.

    Article  Google Scholar 

  25. Perkins, D. N. (1982). The perceiver as organizer and geometer. In J. Beck (Ed.),Organization and representation in perception (pp. 73–93). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  26. Pizlo, Z. (2001). Perception viewed as an inverse problem: A minireview.Vision Research,41, 3145–3161.

    PubMed  Article  Google Scholar 

  27. Pizlo, Z., Li, Y., &Chan, M. (2005). Regularization model of human binocular vision. InProceedings of IS&T/SPIE Conference on Computational Imaging (Vol. 5674, pp. 229–240). Bellingham, WA: International Society for Optical Engineering.

    Google Scholar 

  28. Pizlo, Z., Li, Y., &Francis, G. (2005). A new look at binocular stereopsis.Vision Research,45, 2244–2255.

    PubMed  Article  Google Scholar 

  29. Pizlo, Z., Rosenfeld, A., &Epelboim, J. (1995). An exponential pyramid model of the time-course of size processing.Vision Research,35, 1089–1107.

    PubMed  Article  Google Scholar 

  30. Pizlo, Z., Rosenfeld, A., &Weiss, I. (1995). Interdisciplinary study of visual invariants. In D. Dori & A. Bruckstein (Eds.),Shape, structure and pattern recognition (pp. 118–127). Singapore: World Scientific.

    Google Scholar 

  31. Pizlo, Z., Rosenfeld, A., &Weiss, I. (1997). The geometry of visual space: About the incompatibility between science and mathematics. Dialogue.Computer Vision & Image Understanding,65, 425–433.

    Article  Google Scholar 

  32. Pizlo, Z., &Stevenson, A. K. (1999). Shape constancy from novel views.Perception & Psychophysics,61, 1299–1307.

    Article  Google Scholar 

  33. Poggio, T., Torre, V., &Koch, C. (1985). Computational vision and regularization theory.Nature,317, 314–319.

    PubMed  Article  Google Scholar 

  34. Pomerantz, J. R., &Kubovy, M. (1986). Theoretical approaches to perceptual organization. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.),Handbook of perception and human performance: Vol. 2. Cognitive processes and performance (pp. 36-1 to 36–46). New York: Wiley.

    Google Scholar 

  35. Rawlings, S. C., &Shipley, T. (1969). Stereoscopic acuity and horizontal angular distance from fixation.Journal of the Optical Society of America,59, 991–993.

    PubMed  Google Scholar 

  36. Regan, D. (2000). Human perception of objects. Sunderland, MA: Sinauer.

    Google Scholar 

  37. Rock, I., &DiVita, J. (1987). A case of viewer-centered object perception.Cognitive Psychology,19, 280–293.

    PubMed  Article  Google Scholar 

  38. Rock, I., Wheeler, D., &Tudor, L. (1989). Can we imagine how objects look from other viewpoints?Cognitive Psychology,21, 185–210.

    PubMed  Article  Google Scholar 

  39. Shepard, R. N., &Cooper, L. A. (1982).Mental images and their transformations. Cambridge, MA: MIT Press.

    Google Scholar 

  40. Sinha, P., &Adelson, E. H. (1992). Recovery of 3-D shape from 2-D wireframe drawings [Abstract].Investigative Ophthalmology & Visual Science,33, 825.

    Google Scholar 

  41. Tjan, B. S., &Legge, G. E. (1998). The viewpoint complexity of an object-recognition task.Vision Research,38, 2335–2350.

    PubMed  Article  Google Scholar 

  42. Vetter, T., Poggio, T., &Bülthoff, H. H. (1994). The importance of symmetry and virtual views in three-dimensional object recognition.Current Biology,4, 18–23.

    PubMed  Article  Google Scholar 

  43. Witkin, A., Terzopoulos, D., &Kaas, M. (1987). Signal matching through scale space.International Journal of Computer Vision,1, 133–144.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zygmunt Pizlo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chan, M.W., Stevenson, A.K., Li, Y. et al. Binocular shape constancy from novel views: The role of a priori constraints. Perception & Psychophysics 68, 1124–1139 (2006). https://doi.org/10.3758/BF03193715

Download citation

Keywords

  • Mental Rotation
  • Retinal Image
  • Binocular Disparity
  • Polygonal Line
  • Psychophysical Experiment