Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Perception & Psychophysics
  3. Article
The effect of eccentricity and the adapting level on the café wall illusion
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Influences of orientation on the Ponzo, contrast, and Craik-O’Brien-Cornsweet illusions

24 December 2019

Leo Poom

A Geometric Model of Multi-scale Orientation Preference Maps via Gabor Functions

07 April 2018

Emre Baspinar, Giovanna Citti & Alessandro Sarti

A power law study of the edge influence on the perceived filling-in brightness magnitude

18 September 2019

Marcelo Fernandes Costa & Carlo Martins Gaddi

A dynamic 1/f noise protocol to assess visual attention without biasing perceptual processing

01 August 2022

Nina M. Hanning & Heiner Deubel

How are local orientation signals pooled?

02 March 2022

Jüri Allik, Mai Toom, … Aire Raidvee

The Tilt Illusion and Orientation Sensitivity

01 May 2020

V. M. Bondarko

A method for detection of inattentional feature blindness

02 March 2021

Aire Raidvee, Mai Toom & Jüri Allik

Application of blurred circular 3D images on the human vision model

27 August 2018

Bo-Wen Wu & Yi-Chin Fang

A sub-Riemannian model of the visual cortex with frequency and phase

29 July 2020

E. Baspinar, A. Sarti & G. Citti

Download PDF
  • Published: October 2005

The effect of eccentricity and the adapting level on the café wall illusion

  • Tatsuto Takeuchi1 

Perception & Psychophysics volume 67, pages 1113–1127 (2005)Cite this article

  • 684 Accesses

  • 5 Citations

  • 6 Altmetric

  • Metrics details

Abstract

The café wall pattern is composed of rows of alternating light and dark tiles, and alternate rows are shifted by one fourth of a cycle. The rows of tiles are separated by narrow horizontal mortar lines whose luminance is between those of the dark and the light tiles. Although the mortar lines are physically parallel, they are perceived to be tilted, which is known as the café wall illusion. In this study, an energy-based model for encoding orientation is implemented in order to estimate the strength of the café wall illusion, and it is shown that the estimated orientation depends on the spatial frequency to which each orientation-encoding unit is tuned. The estimation of mortar line orientation from an orientationencoding unit tuned to a lower spatial frequency was greater than that from a unit tuned to a higher spatial frequency. It is assumed that the perceived mortar line orientation is the result of an integration of responses from the orientation-encoding units tuned to various spatial frequencies. This leads to the prediction that under viewing conditions in which responses from orientation-encoding units tuned to a higher spatial frequency are presumably weakened, the strength of the café wall illusion increases. In agreement with this prediction, it is shown that the café wall illusion is stronger when the café wall image is presented at the periphery or is observed under low luminance levels. On the other hand, the weighted averaging of the estimated mortar orientations across spatial frequencies overestimates the perceived orientation of the mortar lines. This suggests that the final percept of the café wall illusion could be determined by some kind of nonlinear interaction, such as an inhibitory interaction, between orientation-encoding units.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Adelson, E. H., &Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion.Journal of the Optical Society of America A,2, 284–299.

    Article  Google Scholar 

  • Adelson, E. H., &Bergen, J. R. (1991). The plenoptic function and the elements of early vision. In M. S. Landy & J. A. Movshon (Eds.),Computational models of visual processing (pp. 3–20). Cambridge, MA: MIT Press.

    Google Scholar 

  • Anzai, A., Ohzawa, I., &Freeman, R. D. (1999). Neural mechanisms for processing binocular information: II. Complex cells.Journal of Neurophysiology,82, 909–924.

    PubMed  Google Scholar 

  • Barten, P. G. J. (1999).Contrast sensitivity of the human eye and its effects on image quality. Bellingham, WA: SPIE Optical Engineering Press.

    Book  Google Scholar 

  • Bauman, L. A., &Bonds, A. B. (1991). Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex.Vision Research,31, 933–944.

    Article  PubMed  Google Scholar 

  • Bennett, P. J., &Banks, M. S. (1987). Sensitivity loss in odd- symmetric mechanisms and phase anomalies in peripheral vision.Nature,326, 873–876.

    Article  PubMed  Google Scholar 

  • Bergen, J. R., &Landy, M. S. (1991). Computational modeling of visual texture segregation. In M. S. Landy & J. A. Movshon (Eds.),Computational models of visual processing (pp. 253–271). Cambridge, MA: MIT Press.

    Google Scholar 

  • Blakemore, C., &Campbell, F. W. (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images.Journal of Physiology,203, 237–260.

    PubMed  Google Scholar 

  • Blakeslee, B., &McCourt, M. E. (2004). A unified theory of brightness contrast and assimilation incorporating oriented multiscale spa tial filtering and contrast normalization.Vision Research,44, 2483–2503.

    Article  PubMed  Google Scholar 

  • Campbell, F. W., &Kulikowski, J. J. (1966). Orientation selectivity of the human visual system.Journal of Physiology,187, 437–445.

    PubMed  Google Scholar 

  • Carandini, M., Heeger, D. J., &Movshon, J. A. (1999). Linearity and gain control in V1 simple cells. In E. G. Jones & P. S. Ulinski (Eds.),Cerebral cortex: Vol. XII. Cortical model (pp. 401–443). New York: Plenum.

    Google Scholar 

  • Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters.Journal of the Optical Society of America A,2, 1160–1169.

    Article  Google Scholar 

  • DeAngelis, G. C., &Anzai, A. (2004). A modern view of the classical receptive field: Linear and nonlinear spatiotemporal processing by V1 neurons. In L. M. Chalupa & J. S. Werner (Eds.),The visual neurosciences (pp. 704–719). Cambridge, MA: MIT Press.

    Google Scholar 

  • DeAngelis, G. C., Ghose, G. M., Ohzawa, I., &Freeman, R. D. (1999). Functional micro-organization of primary visual cortex: Receptive field analysis of nearby neurons.Journal of Neuroscience,19, 4046–4064.

    PubMed  Google Scholar 

  • De Valois, K. K. (1977). Spatial frequency adaptation can enhance contrast sensitivity.Vision Research,17, 1057–1065.

    Article  PubMed  Google Scholar 

  • De Valois, K. K., &Tootell, R. B. H. (1983). Spatial-frequency-specific inhibition in cat striate cortex cells.Journal of Physiology,291, 483–505.

    Google Scholar 

  • De Valois, R. L., Albrecht, D. G., &Thorell, L. G. (1982). Spatial frequency selectivity of cells in macaque visual cortex.Vision Research,22, 545–559.

    Article  PubMed  Google Scholar 

  • De Valois, R. L., &De Valois, K. K. (1988).Spatial vision. New York: Oxford University Press.

    Google Scholar 

  • De Valois, R. L., Morgan, H., &Snodderly, D. M. (1974). Psychophysical studies of monkey vision: 3. Spatial luminance contrast sensitivity tests of macaque and human observers.Vision Research,14, 75–81.

    Article  PubMed  Google Scholar 

  • Earle, D. C., &Maskell, S. J. (1993). Fraser cords and reversal of the café wall illusion.Perception,22, 383–390.

    Article  PubMed  Google Scholar 

  • Emerson, R. C., Bergen, J. R., &Adelson, E. H. (1992). Directionally selective complex cells and the computation of motion energy in cat visual cortex.Vision Research,32, 203–218.

    Article  PubMed  Google Scholar 

  • Field, D. J., &Tolhurst, D. J. (1986). The structure and symmetry of simple-cell receptive-field profiles in the cat’s visual cortex.Proceedings of the Royal Society of London: Series B,228, 379–400.

    Article  Google Scholar 

  • Fraser, J. (1908). A new illusion of visual direction.British Journal of Psychology,2, 307–320.

    Google Scholar 

  • Freeman, W. T., &Adelson, E. H. (1991). The design and use of steerable filters.IEEE Transactions on Pattern Analysis & Machine Intelligence,13, 891–906.

    Article  Google Scholar 

  • Georgeson, M. A., &Meese, T. S. (1997). Perception of stationary plaids: The role of spatial filters in edge analysis.Vision Research,37, 3255–3271.

    Article  PubMed  Google Scholar 

  • Georgeson, M. A., &Sullivan, G. D. (1975). Contrast constancy: Deblurring in human vision by spatial frequency channels.Journal of Physiology,252, 627–656.

    PubMed  Google Scholar 

  • Gorea, A., &Papathomas, T. V. (1991). Texture segregation by chromatic and achromatic visual pathways: An analogy with motion processing.Journal of the Optical Society of America A,8, 386–393.

    Article  Google Scholar 

  • Gray, C. M., König, P., Engel, A. K., &Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties.Nature,338, 334–337.

    Article  PubMed  Google Scholar 

  • Gregory, R. L. (1968). Visual illusions.Scientific American,219, 66–76.

    Article  PubMed  Google Scholar 

  • Gregory, R. L. (1972). [Editorial].Perception,1, 492.

    Google Scholar 

  • Gregory, R. L., &Heard, P. F. (1979). Border locking and the café wall illusion.Perception,8, 365–380.

    Article  PubMed  Google Scholar 

  • Haig, N. D. (1989). A new visual illusion, and its mechanism.Perception,18, 333–345.

    Article  PubMed  Google Scholar 

  • Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex.Visual Neuroscience,9, 181–197.

    Article  PubMed  Google Scholar 

  • Hood, D. C., &Finkelstein, M. A. (1986). Visual sensitivity. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.),Handbook of perception and human performance (Vol. 1, pp. 1–66). New York: Wiley.

    Google Scholar 

  • Hubel, D. H., &Wiesel, T. (1962). Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex.Journal of Physiology,160, 106–154.

    PubMed  Google Scholar 

  • Kelly, D. H. (1984). Retinal inhomogeneity: I. Spatiotemporal contrast sensitivity.Journal of the Optical Society of America A,1, 107–113.

    Article  Google Scholar 

  • Kruizinga, P., &Petkov, N. (1999). Nonlinear operator for oriented texture.IEEE Transactions on Image Processing,8, 1395–1407.

    Article  PubMed  Google Scholar 

  • Levitt, H. (1971). Transformed up—down methods in psychoacoustics.Journal of the Acoustical Society of America,49, 467–477.

    Article  PubMed  Google Scholar 

  • Lulich, D. P., &Stevens, K. A. (1989). Differential contributions of circular and elongated spatial filters to the café wall illusion.Biological Cybernetics,61, 427–435.

    Article  PubMed  Google Scholar 

  • Malik, J., &Perona, P. (1990). Preattentive texture discrimination with early vision mechanisms.Journal of the Optical Society of America A,7, 923–932.

    Article  Google Scholar 

  • Marr, D. (1982).Vision: A Computational investigation into the human representation and processing of visual information. San Francisco: Freeman.

    Google Scholar 

  • Marr, D., &Hildreth, E. (1980). Theory of edge detection.Proceedings of the Royal Society of London: Series B,207, 187–217.

    Article  Google Scholar 

  • Morgan,M. J., &Casco, C. (1990). Spatial filtering and spatial primitives in early vision: An explanation of the Zöllner—Judd class of geometrical illusion.Proceedings of the Royal Society of London: Series B,242, 1–10.

    Article  Google Scholar 

  • Morgan, M. J., &Hotopf, H. N. (1989). Perceived diagonals in grids and lattices.Vision Research,29, 1005–1015.

    Article  PubMed  Google Scholar 

  • Morgan, M. J., &Moulden, B. (1986). The Münsterberg figure and twisted cords.Vision Research,26, 1793–1800.

    Article  PubMed  Google Scholar 

  • Morrone, M. C., &Burr, D. C. (1988). Feature detection in human vision: A phase dependent energy model.Proceedings of the Royal Society of London: Series B,235, 221–245.

    Article  Google Scholar 

  • Münsterberg, H. (1897). Die verschobene Schachbrettfigur.Zeitschrift für Psychologie,5, 185–188.

    Google Scholar 

  • Nachmias, J., Sansbury, R., Vassilev, A., &Weber, A. (1973). Adaptation to square-wave gratings: In search of the elusive third harmonic.Vision Research,13, 1335–1342.

    Article  Google Scholar 

  • Nestares, O., &Heeger, D. J. (1997). Modeling the apparent frequencyspecific suppression in simple cell responses.Vision Research,37, 1535–1543.

    Article  PubMed  Google Scholar 

  • Ohzawa, I., DeAngelis, G. C., &Freeman, R. D. (1990). Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors.Science,249, 1037–1041.

    Article  PubMed  Google Scholar 

  • Peli, E. (2002). Feature detection algorithm based on a visual system model.Proceedings of the IEEE,90, 78–93.

    Article  Google Scholar 

  • Petkov, N., &Kruizinga, P. (1997). Computational models of visual neurons specialized in the detection of periodic and aperiodic oriented visual stimuli: Bar and grating cells.Biological Cybernetics,76, 83–96.

    Article  PubMed  Google Scholar 

  • Phillips, G. C., &Wilson, H. R. (1984). Orientation bandwidths of spatial mechanisms measured by masking.Journal of the Optical Society of America A,1, 226–232.

    Article  Google Scholar 

  • Pollen, D. A., &Ronner, S. F. (1983). Visual cortical neurons as localized spatial frequency filters.IEEE Transactions on Systems, Man, & Cybernetics,13, 907–916.

    Google Scholar 

  • Robson, J. G., &Graham, N. (1981). Probability summation and regional variation in contrast sensitivity across the visual field.Vision Research,21, 409–418.

    Article  PubMed  Google Scholar 

  • Rock, I. (1986). The description and analysis of object and event perception. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.),Handbook of perception and human performance (Vol. 2, pp. 33–71). New York: Wiley.

    Google Scholar 

  • Rovamo, J., Virsu, V., &Näsänen, R. (1978). Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision.Nature,271, 54–56.

    Article  PubMed  Google Scholar 

  • Savage, G. L., &Banks, M. S. (1992). Scotopic visual efficiency: Constraints by optics, receptor properties and rod pooling.Vision Research,32, 645–656.

    Article  PubMed  Google Scholar 

  • Stabell, B., &Stabell, U. (1981). Absolute spectral sensitivity at different eccentricities.Journal of the Optical Society of America,71, 836–840.

    Article  PubMed  Google Scholar 

  • Stuart, G. W., &Bossomaier, T. R. J. (1992). Cooperative representation of visual borders.Perception,21, 185–194.

    Article  PubMed  Google Scholar 

  • Takeuchi, T. (1997). The motion analogue of the café wall illusion.Perception,26, 569–584.

    Article  PubMed  Google Scholar 

  • Tanner, P. P., Jolicoeur, P., Cowan, W. B., Booth, K., &Fishman, F. D. (1989). Antialiasing: A technique for smoothing jagged lines on a computer graphics image—an implementation on the Amiga.Behavior Research Methods, Instruments, & Computers,21, 59–66.

    Google Scholar 

  • Tolhurst, D. J. (1972). Adaptation to square-wave gratings: Inhibition between spatial frequency channels in the human visual system.Journal of Physiology,226, 231–248.

    PubMed  Google Scholar 

  • Tyler, C. W., &Nakayama, K. (1984). Size interactions in the perception of orientation. In L. Spillman & B. R. Woten (Eds.),Sensory experience and perception (pp. 529–546). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • van Nes, F. L., Koenderink, J. J., Nas, H., &Bouman, M. A. (1967). Spatiotemporal modulation transfer in the human eye.Journal of the Optical Society of America,57, 1082–1088.

    Article  PubMed  Google Scholar 

  • Watson, A. B., &Ahumada, A. (1985). Model of human visual motion sensing.Journal of the Optical Society of America A,2, 322–341.

    Article  Google Scholar 

  • Watt, R. J. (1990).Visual processing: Computational, psychophysical and cognitive research. London: Psychology Press.

    Google Scholar 

  • Watt, R. J., &Morgan, M. J. (1985). A theory of the primitive spatial code in human vision.Vision Research,37, 127–142.

    Google Scholar 

  • Wilson, H. R., Ferrera, V. P., &Yo, C. (1992). A psychophysically motivated model for two-dimensional motion perception.Visual Neuroscience,9, 79–97.

    Article  PubMed  Google Scholar 

  • Wilson, H. R., &Giese, S. (1977). Threshold visibility of frequency gradient patterns.Vision Research,17, 1177–1190.

    Article  PubMed  Google Scholar 

  • Wilson, H. R., McFarlane, D. K., &Phillips, G. C. (1983). Spatial frequency tuning of orientation selective units estimated by oblique masking.Vision Research,23, 873–882.

    Article  PubMed  Google Scholar 

  • Wilson, H. R., &Wilkinson, F. (2004). Spatial channels in vision and spatial pooling. In L. M. Chalupa & J. S. Werner (Eds.),The visual neurosciences (pp. 1060–1068). Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Morionosato-Wakamiya 3-1, Atsugi, 243-0198, Kanagawa, Japan

    Tatsuto Takeuchi

Authors
  1. Tatsuto Takeuchi
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Tatsuto Takeuchi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takeuchi, T. The effect of eccentricity and the adapting level on the café wall illusion. Perception & Psychophysics 67, 1113–1127 (2005). https://doi.org/10.3758/BF03193545

Download citation

  • Received: 10 March 2003

  • Accepted: 13 December 2004

  • Issue Date: October 2005

  • DOI: https://doi.org/10.3758/BF03193545

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Spatial Frequency
  • Gabor Filter
  • Wall Image
  • Average Luminance
  • Orientation Energy
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.236.24.215

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.