Abstract
In this study, we investigated how spatial resolution and covert attention affect performance in a texture segmentation task in which performance peaks at midperiphery and drops at peripheral and central retinal locations. The central impairment is called thecentral performance drop (CPD; Kehrer, 1989). It has been established that attending to the target location improves performance in the periphery where resolution is too low for the task, but impairs it at central locations where resolution is too high. This is called thecentral attention impairment (CAI; Yeshurun & Carrasco, 1998, 2000). We employed a cuing procedure in conjunction with selective adaptation to explore (1) whether the CPD is due to the inhibition of low spatial frequency responses by high spatial frequency responses in central locations, and (2) whether the CAI is due to attention’s shifting sensitivity to higher spatial frequencies. We found that adaptation to low spatial frequencies does not change performance in this texture segmentation task. However, adaptation to high spatial frequencies diminishes the CPD and eliminates the CAI. These results indicate that the CPD is primarily due to the dominance of high spatial frequency responses and that covert attention enhances spatial resolution by shifting sensitivity to higher spatial frequencies.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Baldassi, S., &Burr, D. C. (2000). Feature-based integration of orientation signals in visual search.Vision Research,40, 1293–1300.
Balz, G. W., &Hock, H. S. (1997). The effect of attentional spread on spatial resolution.Vision Research,37, 1499–1510.
Blakemore, C., &Campbell, F. W. (1969). On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images.Vision Research,203, 237–260.
Brainard, D. J. (1997). The Psychophysics Toolbox.Spatial Vision,10, 433–436.
Brefczynski, J. A., &De Yoe, E. A. (1999). A physiological correlate of the spotlight’ of visual attention.Nature Neuroscience,2, 370–374.
Breitmeyer, B. (1984).Visual masking: An integrative approach. New York: Oxford University Press.
Cameron, E. L., Tai, J. C., &Carrasco, M. (2002). Covert attention affects the psychometric function of contrast sensitivity.Vision Research,42, 949–967.
Cameron, E. L., Tai, J. C., Eckstein, M. P., &Carrasco, M. (2004). Signal detection theory applied to three visual search tasks: Identification, yes/no detection and localization.Spatial Vision,17, 295–325.
Carrasco, M., Figueroa, J. G., &Willen, J. D. (1986). A test of the spatial-frequency explanation of the Müller-Lyer illusion.Perception,15, 553–562.
Carrasco, M., &Frieder, K. S. (1997). Cortical magnification neutralizes the eccentricity effect in visual search.Vision Research,37, 63–82.
Carrasco, M., Giordano, A. M., &McElree, B. (2004). Temporal performance fields: Visual and attentional factors.Vision Research,44, 1351–1365.
Carrasco, M., Giordano, A. M., &McElree, B. (2006). Attention speeds processing across eccentricity: Feature and conjunction searches.Vision Research,46, 2028–2040.
Carrasco, M., &McElree, B. (2001). Covert attention accelerates the rate of visual information processing.Proceedings of the National Academy of Sciences,98, 5363–5367.
Carrasco, M., McElree, B., Denisova, K., &Giordano, A. M. (2003). Speed of visual processing increases with eccentricity.Nature Neuroscience,6, 669–670.
Carrasco, M., Penpeci-Talgar, C., &Eckstein, M. (2000). Spatial covert attention increases contrast sensitivity along the CSF: Support for signal enhancement.Vision Research,40, 1203–1215.
Carrasco, M., Talgar, C., &Cameron, L. (2001). Characterizing visual performance fields: Effects of transient covert attention, spatial frequency, eccentricity, task, and set size.Spatial Vision,14, 61–75.
Carrasco, M., Williams, P., &Yeshurun, Y. (2002). Covert attention increases spatial resolution with or without masks: Support for signal enhancement.Journal of Vision,2, 467–479. Available at journalofvision.org/2/6/4/, doi:10.1167/2.6.4.
Carrasco, M., &Yeshurun, Y. (1998). The contribution of covert attention to the set-size and eccentricity effects in visual search.Journal of Experimental Psychology: Human Perception & Performance,24, 673–692.
Chaudhuri, A. (1990). Modulation of the motion aftereffect by selective attention.Nature,344, 60–62.
Cheal, M. L., &Lyon, D. R. (1991). Central and peripheral precuing of forced-choice discrimination.Quarterly Journal of Experimental Psychology,43A, 859–880.
Cohen, J. D., MacWhinney, B., Flatt, M., &Provost, J. (1993). PsyScope: A new graphic interactive environment for designing psychology experiments.Behavior Research Methods, Instruments, & Computers,25, 257–271.
Deco, G., Rolls, E. T., &Zihl, J. (2005). A neurodynamical model of visual attention. In L. Itti, G. Rees, & J. K. Tsotsos (Eds.),Neurobiology of attention (pp. 593–599). Amsterdam: Elsevier.
DeValois, R. L., Albrecht, D. G., &Thorell, L. G. (1982). Spatial frequency selectivity of cells in macaque visual cortex.Vision Research,22, 545–559.
DeValois, R. L., &DeValois, K. K. (1988).Spatial vision. New York: Oxford University Press.
Dosher, B., &Lu, Z.-L. (2000a). Mechanisms of perceptual attention in precuing of location.Vision Research,40, 1269–1292.
Dosher, B., &Lu, Z.-L. (2000b). Noise exclusion in spatial attention.Psychological Science,11, 139–146.
Eckstein, M. P. (1998). The lower efficiency for conjunctions is due to noise and not serial attentional processing.Psychological Science,9, 111–118.
Foley, J. M. (1994). Human luminance pattern-vision mechanisms: Masking experiments require a new model.Journal of the Optical Society of America A,11, 1710–1719.
Foley, J. M., &Schwartz, W. (1998). Spatial attention: Effect of position uncertainty and number of distractor patterns on the threshold—versus—contrast function for contrast discrimination.Journal of the Optical Society of America,15, 1036–1047.
Gandhi, S. P., Heeger, D. J., &Boynton, G. M. (1999). Spatial attention affects brain activity in human primary visual cortex.Proceedings of the National Academy of Sciences,96, 3314–3319.
Ginsburg, A. P. (1984). Visual form perception based on biological filtering. In L. Spilman & U. R. Woolen (Eds.),Sensory experiences, adaptation, and perception (pp. 53–72). Hillsdale, NJ: Erlbaum.
Gobell, J., &Carrasco, M. (2005). Attention alters the appearance of spatial frequency and gap size.Psychological Science,16, 644–651.
Golla, H., Ignashchenkova, A., Haarmeier, T., &Their, P. (2004). Improvement of visual acuity by spatial cueing: A comparative study in human and non-human primates.Vision Research,44, 1589–1600.
Graham, N. (1989).Visual pattern analyzers. New York: Oxford University Press.
Graham, N., Robson, J. G., &Nachmias, J. (1978). Grating summation in fovea and periphery.Vision Research,18, 815–825.
Graham, N., &Sutter, A. (2000). Normalization: Contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision.Vision Research,40, 2737–2761.
Graham, N., Sutter, A., &Venkatesan, C. (1993). Spatial-frequency and orientation-selectivity of simple and complex channels in region segregation.Vision Research,33, 1893–1911.
Gurnsey, R., Di Lenardo, D., &Potechin, C. (2004). Backward masking and the central performance drop.Vision Research,44, 2587–2596.
Gurnsey, R., Pearson, P., &Day, D. (1996). Texture segmentation along the horizontal meridian: Nonmonotonic changes in performance with eccentricity.Journal of Experimental Psychology: Human Perception & Performance,22, 738–757.
Harmon, L. (1971). Some aspects of recognition of human faces. In O. J. Grusser (Ed.),Pattern recognition in biological and technical systems. Berlin: Springer.
Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex.Visual Neuroscience,9, 181–198.
Joffe, K. M., &Scialfa, C. T. (1995). Texture segmentation as a function of eccentricity, spatial frequency and target size.Spatial Vision,9, 325–342.
Jonides, J. (1981). Voluntary vs. automatic control over the mind’s eye’s movement. In J. B. Long & A. D. Baddeley (Eds.),Attention and performance IX (pp. 187–204). Hillsdale, NJ: Erlbaum.
Kehrer, L. (1987). Perceptual segregation and retinal position.Spatial Vision,2, 247–261.
Kehrer, L. (1989). Central performance drop on perceptual segregation tasks.Spatial Vision,4, 45–62.
Kehrer, L. (1997). The central performance drop in texture segmentation: A simulation based on a spatial filter model.Biological Cybernetics,77, 297–305.
Kehrer, L., &Meinecke, C. (2003). A space-variant filter model of textures segregation: Parameter adjustment guided by psychophysical data.Biological Cybernetics,88, 183–200.
Lamme, V. A. F. (1995). The neurophysiology of figure-ground segregation in primary visual cortex.Journal of Neuroscience,15, 1605–1615.
Lee, D. K., Itti, L., Koch, C., &Braun, J. (1999). Attention activates winner-take-all competition among visual filters.Nature Neuroscience,2, 375–381.
Ling, S., &Carrasco, M. (2006). Sustained and transient covert attention enhance the signal via different contrast response functions.Vision Research,46, 1210–1220.
Liu, T., Pestilli, F., &Carrasco, M. (2005). Transient attention enhances perceptual performance and fMRI response in human visual cortex.Neuron,45, 469–477.
Lu, Z.-L., &Dosher, B. A. (1998). External noise distinguishes attention mechanisms.Vision Research,38, 1183–1198.
Lu, Z.-L., &Dosher, B. A. (2000). Spatial attention: Different mechanisms for central and peripheral temporal precues?Journal of Experimental Psychology: Human Perception & Performance,26, 1534–1548.
Luck, S. J., Chelazzi, L., Hillyard, S. A., &Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex.Journal of Neurophysiology,77, 24–42.
Mayfrank, L., Kimmig, H., &Fischer, B. (1987). The role of attention in the preparation of visually guided saccadic eye movements in man. In J. K. O’Regan & A. Levy-Schoen (Eds.),Eye movements: From physiology to cognition (pp. 37–45). New York: Elsevier, North-Holland.
McCourt, M. E. (1982). A spatial frequency dependent grating induction effect.Vision Research,22, 119–134.
McCourt, M. E., &Foley, J. M. (1985). Spatial frequency interference on grating-induction.Vision Research,25, 1507–1518.
Meinecke, C., &Kehrer, L. (1994). Peripheral and foveal segmentation of angle textures.Perception & Psychophysics,56, 326–334.
Montaser-Kouhsari, L., &Rajimehr, R. (2004). Attentional modulation of adaptation to illusory lines.Journal of Vision,4, 434–444. Available at journalofvision.org/4/6/3/, doi:10.1167/4.6.3.
Moran, J., &Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex.Science,229, 782–784.
Morgan, M. J., Ward, R. M., &Castet, E. (1998). Visual search for a tilted target: Tests of spatial uncertainty models.Quarterly Journal of Experimental Psychology,51A, 343–370.
Morikawa, K. (2000). Central performance drop in texture segmentation: The role of spatial and temporal factors.Vision Research,40, 3517–3526.
Movshon, J. A., &Blakemore, C. (1973). Orientation specificity and spatial selectivity in human vision.Perception,2, 53–60.
Movshon, J. A., &Lennie, P. (1979). Pattern selective adaptation in visual cortical neurons.Nature,278, 850–852.
Nakayama, K., &Mackeben, M. (1989). Sustained and transient components of focal visual attention.Vision Research,29, 1631–1646.
Palmer, J., Verghese, P., &Pavel, M. (2000). The psychophysics of visual search.Vision Research,40, 1227–1268.
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies.Spatial Vision,10, 437–442.
Posner, M. I. (1980). Orienting of attention.Quarterly Journal of Experimental Psychology,32, 3–25.
Potechin, C., &Gurnsey, R. (2003). Backward masking is not required to elicit the central performance drop.Spatial Vision,16, 393–406.
Purpura, K. P., Victor, J. D., &Katz, E. (1994). Striate cortex extracts higher-order spatial correlations from visual textures.Proceedings of the National Academy of Sciences,91, 8482–8486.
Reynolds, J. H., &Chelazzi, L. (2004). Attentional modulation of visual processing.Annual Review of Neuroscience,27, 611–647.
Reynolds, J. H., &Desimone, R. (1999). The role of neural mechanisms of attention in solving the binding problem.Neuron,24, 19–29.
Reynolds, J. H., Pasternak, T., &Desimone, R. (2000). Attention increases sensitivity of V4 neurons.Neuron,26, 703–714.
Rovamo, J., Virsu, V., &Näsänen, R. (1978). Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision.Nature,271, 54–56.
Saul, A. B., &Cynader, M. S. (1989). Adaptation in single units in visual cortex: The tuning of aftereffects in the spatial domain.Visual Neuroscience,2, 593–607.
Shiu, L., &Pashler, H. (1995). Spatial attention and vernier acuity.Vision Research,35, 337–343.
Snowden, R. (1992). Orientation bandwidth: The effect of spatial and temporal frequency.Vision Research,32, 1965–1974.
Spivey, M. J., &Spirn, M. J. (2000). Selective visual attention modulates the direct tilt aftereffect.Perception & Psychophysics,62, 1525–1533.
Suzuki, S. (2001). Attention-dependent brief adaptation to contour orientation: A high-level aftereffect for convexity?Vision Research,41, 3883–3902.
Talgar, C. P., &Carrasco, M. (2002). Vertical meridian asymmetry in spatial resolution: Visual and attentional factors.Psychonomic Bulletin & Review,9, 714–722.
Tsal, Y., &Shalev, L. (1996). Inattention magnifies perceived length: The attentional receptive field hypothesis.Journal of Experimental Psychology: Human Perception & Performance,22, 233–243.
von Berg, J., Ziebell, O., &Stiehl, H. S. (2002). Texture segmentation performance related to cortical geometry.Vision Research,42, 1917–1929.
Wright, M. J., &Johnston, A. (1983). Spatiotemporal contrast sensitivity and visual field locus.Vision Research,23, 983–989.
Yeshurun, Y., &Carrasco, M. (1998). Attention improves or impairs visual performance by enhancing spatial resolution.Nature,396, 72–75.
Yeshurun, Y., &Carrasco, M. (1999). Spatial attention improves performance in spatial resolution tasks.Vision Research,39, 293–305.
Yeshurun, Y., &Carrasco, M. (2000). The locus of attentional effects in texture segmentation.Nature Neuroscience,3, 622–627.
Author information
Authors and Affiliations
Corresponding author
Additional information
An NSF BCS-9910734 grant to M.C. supported this study.
Rights and permissions
About this article
Cite this article
Carrasco, M., Loula, F. & Ho, YX. How attention enhances spatial resolution: Evidence from selective adaptation to spatial frequency. Perception & Psychophysics 68, 1004–1012 (2006). https://doi.org/10.3758/BF03193361
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.3758/BF03193361


