Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Perception & Psychophysics
  3. Article

How attention enhances spatial resolution: Evidence from selective adaptation to spatial frequency

  • Published: August 2006
  • Volume 68, pages 1004–1012, (2006)
  • Cite this article
Download PDF
Perception & Psychophysics Aims and scope Submit manuscript
How attention enhances spatial resolution: Evidence from selective adaptation to spatial frequency
Download PDF
  • Marisa Carrasco1,
  • Fani Loula1 &
  • Yun-Xian Ho1 
  • 1054 Accesses

  • Explore all metrics

Abstract

In this study, we investigated how spatial resolution and covert attention affect performance in a texture segmentation task in which performance peaks at midperiphery and drops at peripheral and central retinal locations. The central impairment is called thecentral performance drop (CPD; Kehrer, 1989). It has been established that attending to the target location improves performance in the periphery where resolution is too low for the task, but impairs it at central locations where resolution is too high. This is called thecentral attention impairment (CAI; Yeshurun & Carrasco, 1998, 2000). We employed a cuing procedure in conjunction with selective adaptation to explore (1) whether the CPD is due to the inhibition of low spatial frequency responses by high spatial frequency responses in central locations, and (2) whether the CAI is due to attention’s shifting sensitivity to higher spatial frequencies. We found that adaptation to low spatial frequencies does not change performance in this texture segmentation task. However, adaptation to high spatial frequencies diminishes the CPD and eliminates the CAI. These results indicate that the CPD is primarily due to the dominance of high spatial frequency responses and that covert attention enhances spatial resolution by shifting sensitivity to higher spatial frequencies.

Article PDF

Download to read the full article text

Similar content being viewed by others

Feature-based attention warps the perception of visual features

Article Open access 20 April 2023

Adaptive visual selection in feature space

Article 05 December 2022

Effects of spatial attention on spatial and temporal acuity: A computational account

Article 21 June 2022
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Baldassi, S., &Burr, D. C. (2000). Feature-based integration of orientation signals in visual search.Vision Research,40, 1293–1300.

    Article  PubMed  Google Scholar 

  • Balz, G. W., &Hock, H. S. (1997). The effect of attentional spread on spatial resolution.Vision Research,37, 1499–1510.

    Article  PubMed  Google Scholar 

  • Blakemore, C., &Campbell, F. W. (1969). On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images.Vision Research,203, 237–260.

    Google Scholar 

  • Brainard, D. J. (1997). The Psychophysics Toolbox.Spatial Vision,10, 433–436.

    Article  PubMed  Google Scholar 

  • Brefczynski, J. A., &De Yoe, E. A. (1999). A physiological correlate of the spotlight’ of visual attention.Nature Neuroscience,2, 370–374.

    Article  PubMed  Google Scholar 

  • Breitmeyer, B. (1984).Visual masking: An integrative approach. New York: Oxford University Press.

    Google Scholar 

  • Cameron, E. L., Tai, J. C., &Carrasco, M. (2002). Covert attention affects the psychometric function of contrast sensitivity.Vision Research,42, 949–967.

    Article  PubMed  Google Scholar 

  • Cameron, E. L., Tai, J. C., Eckstein, M. P., &Carrasco, M. (2004). Signal detection theory applied to three visual search tasks: Identification, yes/no detection and localization.Spatial Vision,17, 295–325.

    Article  PubMed  Google Scholar 

  • Carrasco, M., Figueroa, J. G., &Willen, J. D. (1986). A test of the spatial-frequency explanation of the Müller-Lyer illusion.Perception,15, 553–562.

    Article  PubMed  Google Scholar 

  • Carrasco, M., &Frieder, K. S. (1997). Cortical magnification neutralizes the eccentricity effect in visual search.Vision Research,37, 63–82.

    Article  PubMed  Google Scholar 

  • Carrasco, M., Giordano, A. M., &McElree, B. (2004). Temporal performance fields: Visual and attentional factors.Vision Research,44, 1351–1365.

    Article  PubMed  Google Scholar 

  • Carrasco, M., Giordano, A. M., &McElree, B. (2006). Attention speeds processing across eccentricity: Feature and conjunction searches.Vision Research,46, 2028–2040.

    Article  PubMed  Google Scholar 

  • Carrasco, M., &McElree, B. (2001). Covert attention accelerates the rate of visual information processing.Proceedings of the National Academy of Sciences,98, 5363–5367.

    Article  Google Scholar 

  • Carrasco, M., McElree, B., Denisova, K., &Giordano, A. M. (2003). Speed of visual processing increases with eccentricity.Nature Neuroscience,6, 669–670.

    Article  Google Scholar 

  • Carrasco, M., Penpeci-Talgar, C., &Eckstein, M. (2000). Spatial covert attention increases contrast sensitivity along the CSF: Support for signal enhancement.Vision Research,40, 1203–1215.

    Article  PubMed  Google Scholar 

  • Carrasco, M., Talgar, C., &Cameron, L. (2001). Characterizing visual performance fields: Effects of transient covert attention, spatial frequency, eccentricity, task, and set size.Spatial Vision,14, 61–75.

    Article  Google Scholar 

  • Carrasco, M., Williams, P., &Yeshurun, Y. (2002). Covert attention increases spatial resolution with or without masks: Support for signal enhancement.Journal of Vision,2, 467–479. Available at journalofvision.org/2/6/4/, doi:10.1167/2.6.4.

    Article  PubMed  Google Scholar 

  • Carrasco, M., &Yeshurun, Y. (1998). The contribution of covert attention to the set-size and eccentricity effects in visual search.Journal of Experimental Psychology: Human Perception & Performance,24, 673–692.

    Article  Google Scholar 

  • Chaudhuri, A. (1990). Modulation of the motion aftereffect by selective attention.Nature,344, 60–62.

    Article  PubMed  Google Scholar 

  • Cheal, M. L., &Lyon, D. R. (1991). Central and peripheral precuing of forced-choice discrimination.Quarterly Journal of Experimental Psychology,43A, 859–880.

    Google Scholar 

  • Cohen, J. D., MacWhinney, B., Flatt, M., &Provost, J. (1993). PsyScope: A new graphic interactive environment for designing psychology experiments.Behavior Research Methods, Instruments, & Computers,25, 257–271.

    Article  Google Scholar 

  • Deco, G., Rolls, E. T., &Zihl, J. (2005). A neurodynamical model of visual attention. In L. Itti, G. Rees, & J. K. Tsotsos (Eds.),Neurobiology of attention (pp. 593–599). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • DeValois, R. L., Albrecht, D. G., &Thorell, L. G. (1982). Spatial frequency selectivity of cells in macaque visual cortex.Vision Research,22, 545–559.

    Article  Google Scholar 

  • DeValois, R. L., &DeValois, K. K. (1988).Spatial vision. New York: Oxford University Press.

    Google Scholar 

  • Dosher, B., &Lu, Z.-L. (2000a). Mechanisms of perceptual attention in precuing of location.Vision Research,40, 1269–1292.

    Article  PubMed  Google Scholar 

  • Dosher, B., &Lu, Z.-L. (2000b). Noise exclusion in spatial attention.Psychological Science,11, 139–146.

    Article  PubMed  Google Scholar 

  • Eckstein, M. P. (1998). The lower efficiency for conjunctions is due to noise and not serial attentional processing.Psychological Science,9, 111–118.

    Article  Google Scholar 

  • Foley, J. M. (1994). Human luminance pattern-vision mechanisms: Masking experiments require a new model.Journal of the Optical Society of America A,11, 1710–1719.

    Article  Google Scholar 

  • Foley, J. M., &Schwartz, W. (1998). Spatial attention: Effect of position uncertainty and number of distractor patterns on the threshold—versus—contrast function for contrast discrimination.Journal of the Optical Society of America,15, 1036–1047.

    Article  Google Scholar 

  • Gandhi, S. P., Heeger, D. J., &Boynton, G. M. (1999). Spatial attention affects brain activity in human primary visual cortex.Proceedings of the National Academy of Sciences,96, 3314–3319.

    Article  Google Scholar 

  • Ginsburg, A. P. (1984). Visual form perception based on biological filtering. In L. Spilman & U. R. Woolen (Eds.),Sensory experiences, adaptation, and perception (pp. 53–72). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Gobell, J., &Carrasco, M. (2005). Attention alters the appearance of spatial frequency and gap size.Psychological Science,16, 644–651.

    Article  PubMed  Google Scholar 

  • Golla, H., Ignashchenkova, A., Haarmeier, T., &Their, P. (2004). Improvement of visual acuity by spatial cueing: A comparative study in human and non-human primates.Vision Research,44, 1589–1600.

    Article  PubMed  Google Scholar 

  • Graham, N. (1989).Visual pattern analyzers. New York: Oxford University Press.

    Book  Google Scholar 

  • Graham, N., Robson, J. G., &Nachmias, J. (1978). Grating summation in fovea and periphery.Vision Research,18, 815–825.

    Article  PubMed  Google Scholar 

  • Graham, N., &Sutter, A. (2000). Normalization: Contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision.Vision Research,40, 2737–2761.

    Article  PubMed  Google Scholar 

  • Graham, N., Sutter, A., &Venkatesan, C. (1993). Spatial-frequency and orientation-selectivity of simple and complex channels in region segregation.Vision Research,33, 1893–1911.

    Article  PubMed  Google Scholar 

  • Gurnsey, R., Di Lenardo, D., &Potechin, C. (2004). Backward masking and the central performance drop.Vision Research,44, 2587–2596.

    Article  PubMed  Google Scholar 

  • Gurnsey, R., Pearson, P., &Day, D. (1996). Texture segmentation along the horizontal meridian: Nonmonotonic changes in performance with eccentricity.Journal of Experimental Psychology: Human Perception & Performance,22, 738–757.

    Article  Google Scholar 

  • Harmon, L. (1971). Some aspects of recognition of human faces. In O. J. Grusser (Ed.),Pattern recognition in biological and technical systems. Berlin: Springer.

    Google Scholar 

  • Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex.Visual Neuroscience,9, 181–198.

    Article  PubMed  Google Scholar 

  • Joffe, K. M., &Scialfa, C. T. (1995). Texture segmentation as a function of eccentricity, spatial frequency and target size.Spatial Vision,9, 325–342.

    Article  PubMed  Google Scholar 

  • Jonides, J. (1981). Voluntary vs. automatic control over the mind’s eye’s movement. In J. B. Long & A. D. Baddeley (Eds.),Attention and performance IX (pp. 187–204). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Kehrer, L. (1987). Perceptual segregation and retinal position.Spatial Vision,2, 247–261.

    Article  PubMed  Google Scholar 

  • Kehrer, L. (1989). Central performance drop on perceptual segregation tasks.Spatial Vision,4, 45–62.

    Article  PubMed  Google Scholar 

  • Kehrer, L. (1997). The central performance drop in texture segmentation: A simulation based on a spatial filter model.Biological Cybernetics,77, 297–305.

    Article  Google Scholar 

  • Kehrer, L., &Meinecke, C. (2003). A space-variant filter model of textures segregation: Parameter adjustment guided by psychophysical data.Biological Cybernetics,88, 183–200.

    Article  PubMed  Google Scholar 

  • Lamme, V. A. F. (1995). The neurophysiology of figure-ground segregation in primary visual cortex.Journal of Neuroscience,15, 1605–1615.

    PubMed  Google Scholar 

  • Lee, D. K., Itti, L., Koch, C., &Braun, J. (1999). Attention activates winner-take-all competition among visual filters.Nature Neuroscience,2, 375–381.

    Article  PubMed  Google Scholar 

  • Ling, S., &Carrasco, M. (2006). Sustained and transient covert attention enhance the signal via different contrast response functions.Vision Research,46, 1210–1220.

    Article  PubMed  Google Scholar 

  • Liu, T., Pestilli, F., &Carrasco, M. (2005). Transient attention enhances perceptual performance and fMRI response in human visual cortex.Neuron,45, 469–477.

    Article  PubMed  Google Scholar 

  • Lu, Z.-L., &Dosher, B. A. (1998). External noise distinguishes attention mechanisms.Vision Research,38, 1183–1198.

    Article  PubMed  Google Scholar 

  • Lu, Z.-L., &Dosher, B. A. (2000). Spatial attention: Different mechanisms for central and peripheral temporal precues?Journal of Experimental Psychology: Human Perception & Performance,26, 1534–1548.

    Article  Google Scholar 

  • Luck, S. J., Chelazzi, L., Hillyard, S. A., &Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex.Journal of Neurophysiology,77, 24–42.

    PubMed  Google Scholar 

  • Mayfrank, L., Kimmig, H., &Fischer, B. (1987). The role of attention in the preparation of visually guided saccadic eye movements in man. In J. K. O’Regan & A. Levy-Schoen (Eds.),Eye movements: From physiology to cognition (pp. 37–45). New York: Elsevier, North-Holland.

    Google Scholar 

  • McCourt, M. E. (1982). A spatial frequency dependent grating induction effect.Vision Research,22, 119–134.

    Article  PubMed  Google Scholar 

  • McCourt, M. E., &Foley, J. M. (1985). Spatial frequency interference on grating-induction.Vision Research,25, 1507–1518.

    Article  PubMed  Google Scholar 

  • Meinecke, C., &Kehrer, L. (1994). Peripheral and foveal segmentation of angle textures.Perception & Psychophysics,56, 326–334.

    Article  Google Scholar 

  • Montaser-Kouhsari, L., &Rajimehr, R. (2004). Attentional modulation of adaptation to illusory lines.Journal of Vision,4, 434–444. Available at journalofvision.org/4/6/3/, doi:10.1167/4.6.3.

    Article  PubMed  Google Scholar 

  • Moran, J., &Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex.Science,229, 782–784.

    Article  PubMed  Google Scholar 

  • Morgan, M. J., Ward, R. M., &Castet, E. (1998). Visual search for a tilted target: Tests of spatial uncertainty models.Quarterly Journal of Experimental Psychology,51A, 343–370.

    Google Scholar 

  • Morikawa, K. (2000). Central performance drop in texture segmentation: The role of spatial and temporal factors.Vision Research,40, 3517–3526.

    Article  PubMed  Google Scholar 

  • Movshon, J. A., &Blakemore, C. (1973). Orientation specificity and spatial selectivity in human vision.Perception,2, 53–60.

    Article  PubMed  Google Scholar 

  • Movshon, J. A., &Lennie, P. (1979). Pattern selective adaptation in visual cortical neurons.Nature,278, 850–852.

    Article  PubMed  Google Scholar 

  • Nakayama, K., &Mackeben, M. (1989). Sustained and transient components of focal visual attention.Vision Research,29, 1631–1646.

    Article  PubMed  Google Scholar 

  • Palmer, J., Verghese, P., &Pavel, M. (2000). The psychophysics of visual search.Vision Research,40, 1227–1268.

    Article  PubMed  Google Scholar 

  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies.Spatial Vision,10, 437–442.

    Article  PubMed  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention.Quarterly Journal of Experimental Psychology,32, 3–25.

    Article  PubMed  Google Scholar 

  • Potechin, C., &Gurnsey, R. (2003). Backward masking is not required to elicit the central performance drop.Spatial Vision,16, 393–406.

    Article  PubMed  Google Scholar 

  • Purpura, K. P., Victor, J. D., &Katz, E. (1994). Striate cortex extracts higher-order spatial correlations from visual textures.Proceedings of the National Academy of Sciences,91, 8482–8486.

    Article  Google Scholar 

  • Reynolds, J. H., &Chelazzi, L. (2004). Attentional modulation of visual processing.Annual Review of Neuroscience,27, 611–647.

    Article  PubMed  Google Scholar 

  • Reynolds, J. H., &Desimone, R. (1999). The role of neural mechanisms of attention in solving the binding problem.Neuron,24, 19–29.

    Article  PubMed  Google Scholar 

  • Reynolds, J. H., Pasternak, T., &Desimone, R. (2000). Attention increases sensitivity of V4 neurons.Neuron,26, 703–714.

    Article  PubMed  Google Scholar 

  • Rovamo, J., Virsu, V., &Näsänen, R. (1978). Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision.Nature,271, 54–56.

    Article  PubMed  Google Scholar 

  • Saul, A. B., &Cynader, M. S. (1989). Adaptation in single units in visual cortex: The tuning of aftereffects in the spatial domain.Visual Neuroscience,2, 593–607.

    Article  PubMed  Google Scholar 

  • Shiu, L., &Pashler, H. (1995). Spatial attention and vernier acuity.Vision Research,35, 337–343.

    Article  PubMed  Google Scholar 

  • Snowden, R. (1992). Orientation bandwidth: The effect of spatial and temporal frequency.Vision Research,32, 1965–1974.

    Article  PubMed  Google Scholar 

  • Spivey, M. J., &Spirn, M. J. (2000). Selective visual attention modulates the direct tilt aftereffect.Perception & Psychophysics,62, 1525–1533.

    Article  Google Scholar 

  • Suzuki, S. (2001). Attention-dependent brief adaptation to contour orientation: A high-level aftereffect for convexity?Vision Research,41, 3883–3902.

    Article  PubMed  Google Scholar 

  • Talgar, C. P., &Carrasco, M. (2002). Vertical meridian asymmetry in spatial resolution: Visual and attentional factors.Psychonomic Bulletin & Review,9, 714–722.

    Article  Google Scholar 

  • Tsal, Y., &Shalev, L. (1996). Inattention magnifies perceived length: The attentional receptive field hypothesis.Journal of Experimental Psychology: Human Perception & Performance,22, 233–243.

    Article  Google Scholar 

  • von Berg, J., Ziebell, O., &Stiehl, H. S. (2002). Texture segmentation performance related to cortical geometry.Vision Research,42, 1917–1929.

    Article  Google Scholar 

  • Wright, M. J., &Johnston, A. (1983). Spatiotemporal contrast sensitivity and visual field locus.Vision Research,23, 983–989.

    Article  PubMed  Google Scholar 

  • Yeshurun, Y., &Carrasco, M. (1998). Attention improves or impairs visual performance by enhancing spatial resolution.Nature,396, 72–75.

    Article  PubMed  Google Scholar 

  • Yeshurun, Y., &Carrasco, M. (1999). Spatial attention improves performance in spatial resolution tasks.Vision Research,39, 293–305.

    Article  PubMed  Google Scholar 

  • Yeshurun, Y., &Carrasco, M. (2000). The locus of attentional effects in texture segmentation.Nature Neuroscience,3, 622–627.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. New York University, New York, New York

    Marisa Carrasco, Fani Loula & Yun-Xian Ho

Authors
  1. Marisa Carrasco
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Fani Loula
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Yun-Xian Ho
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Marisa Carrasco.

Additional information

An NSF BCS-9910734 grant to M.C. supported this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrasco, M., Loula, F. & Ho, YX. How attention enhances spatial resolution: Evidence from selective adaptation to spatial frequency. Perception & Psychophysics 68, 1004–1012 (2006). https://doi.org/10.3758/BF03193361

Download citation

  • Received: 27 June 2005

  • Accepted: 12 October 2005

  • Issue Date: August 2006

  • DOI: https://doi.org/10.3758/BF03193361

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Spatial Frequency
  • Visual Search
  • Vision Research
  • High Spatial Frequency
  • Texture Segmentation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

65.109.116.201

Not affiliated

Springer Nature

© 2025 Springer Nature