Advertisement

Behavior Research Methods

, Volume 39, Issue 2, pp 267–273 | Cite as

HMMTree: A computer program for latent-class hierarchical multinomial processing tree models

  • Christoph StahlEmail author
  • Karl Christoph Klauer
Articles

Abstract

Latent-class hierarchical multinomial models are an important extension of the widely used family of multinomial processing tree models, in that they allow for testing the parameter homogeneity assumption and provide a framework for modeling parameter heterogeneity. In this article, the computer program HMMTree is introduced as a means of implementing latent-class hierarchical multinomial processing tree models. HMMTree computes parameter estimates, confidence intervals, and goodness-of-fit statistics for such models, as well as the Fisher information, expected category means and variances, and posterior probabilities for class membership. A brief guide to using the program is provided.

Keywords

Latent Classis Fisher Information Fisher Information Matrix Multinomial Processing Tree Multinomial Processing Tree Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akaike, H. (1974). A new look at the statistical model identification.IEEE Transactions on Automatic Control,19, 716–723.CrossRefGoogle Scholar
  2. Ashby, F. G., Prinzmetal, W., Ivry, R., &Maddox, W. T. (1996). A formal theory of feature binding in object perception.Psychological Review,103, 165–192.CrossRefPubMedGoogle Scholar
  3. Batchelder, W. H. (1998). Multinomial processing tree models and psychological assessment.Psychological Assessment,10, 331–344.CrossRefGoogle Scholar
  4. Batchelder, W. H., &Crowther, C. S. (1997). Multinomial processing tree models of factorial categorization.Journal of Mathematical Psychology,41, 45–55.CrossRefGoogle Scholar
  5. Batchelder, W. H., &Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling.Psychonomic Bulletin & Review,6, 57–86.CrossRefGoogle Scholar
  6. Bayen, U. J., Murnane, K., &Erdfelder, E. (1996). Source discrimination, item detection, and multinomial models of source monitoring.Journal of Experimental Psychology: Learning, Memory, & Cognition,22, 197–215.CrossRefGoogle Scholar
  7. Brainerd, C. J., Stein, L. M., &Reyna, V. F. (1998). On the development of conscious and unconscious memory.Developmental Psychology,34, 342–357.CrossRefPubMedGoogle Scholar
  8. Erdfelder, E. (2000).Multinomiale Modelle in der kognitiven Psychologie [Multinomial models in cognitive psychology]. Unpublished Habilitationsschrift, Universität Bonn.Google Scholar
  9. Evans, J. St. B. T. (1977). Toward a statistical theory of reasoning.Quarterly Journal of Experimental Psychology,29, 621–635.CrossRefGoogle Scholar
  10. Hu, X. (1999). Multinomial processing tree models: An implementation.Behavior Research Methods, Instruments, & Computers,31, 689–695.CrossRefGoogle Scholar
  11. Hu, X., &Batchelder, W. H. (1994). The statistical analysis of engineering processing tree models with the EM algorithm.Psychometrika,59, 21–47.CrossRefGoogle Scholar
  12. Hu, X., &Phillips, G. A. (1999). GPT.EXE: A powerful tool for the visualization and analysis of general processing tree models.Behavior Research Methods, Instruments, & Computers,31, 220–234.CrossRefGoogle Scholar
  13. Klauer, K. C. (2006). Hierarchical multinomial processing tree models: A latent-class approach.Psychometrika,71, 7–31.CrossRefGoogle Scholar
  14. Klauer, K. C., Musch, J., &Naumer, B. (2000). On belief bias in syllogistic reasoning.Psychological Review,107, 852–884.CrossRefPubMedGoogle Scholar
  15. Klauer, K. C., &Wegener, I. (1998). Unraveling social categorization in the “Who said what?” paradigm.Journal of Personality & Social Psychology,75, 1155–1178.CrossRefGoogle Scholar
  16. Riefer, D. M., &Batchelder, W. H. (1988). Multinomial modeling and the measurement of cognitive processes.Psychological Review,95, 318–339.CrossRefGoogle Scholar
  17. Riefer, D. M., &Batchelder, W. H. (1991). Statistical inference for multinomial processing tree models. In J.-P. Doignon & J.-C. Falmagne (Eds.),Mathematical psychology: Current developments (pp. 313–335). New York: Springer.Google Scholar
  18. Rothkegel, R. (1999). AppleTree: A multinomial processing tree modeling program for Macintosh computers.Behavior Research Methods, Instruments, & Computers,31, 696–700.CrossRefGoogle Scholar
  19. Schwarz, G. (1978). Estimating the dimension of a model.Annals of Statistics,6, 461–464.CrossRefGoogle Scholar
  20. Schweickert, R. (1993). A multinomial processing tree model for degradation and redintegration in immediate recall.Memory & Cognition,21, 168–175.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2007

Authors and Affiliations

  1. 1.Institut für PsychologieAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations