Behavior Research Methods

, Volume 39, Issue 2, pp 259–266 | Cite as

An introduction to association rule mining: An application in counseling and help-seeking behavior of adolescents

  • Dion H. GohEmail author
  • Rebecca P. Ang


Association rule mining (ARM) is a technique used to discover relationships among a large set of variables in a data set. It has been applied to a variety of industry settings and disciplines but has, to date, not been widely used in the social sciences, especially in education, counseling, and associated disciplines. This article thus introduces ARM and presents aspects of existing work that will be relevant and useful to researchers and practitioners in the social sciences. Definitions and concepts are presented, and examples of ARM applications are highlighted to strengthen these ideas. We also discuss an example from our existing research to show that ARM can be used to investigate help-seeking behavior in a sample of secondary school students in Singapore. We also present some guidelines and recommendations for using ARM.


Association Rule Domain Expert Frequent Itemset Secondary School Student Classroom Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agrawal, R., Imielinski, T., &Swami, A. (1993). Mining association rules between sets of items in large databases. In P. Buneman & S. Jajodia (Eds.),Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (pp. 207–216). New York: ACM Press.CrossRefGoogle Scholar
  2. Agrawal, R., &Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In J. B. Bocca, M. Jarke, & C. Zaniolo (Eds.),Proceedings of the 20th International Conference on Very Large Data Bases (pp. 487–499). San Francisco: Morgan Kaufmann.Google Scholar
  3. Anand, S. S., Patrick, A. R., Hughes, J. G., &Bell, D. A. (1998). A data mining methodology for cross-sales.Knowledge-Based Systems,10, 449–461.CrossRefGoogle Scholar
  4. Ang, R. P., Lim, K. M., Tan, A.-G., &Yau, T. Y. (2004). Effects of gender and sex role orientation on help-seeking attitudes.Current Psychology,23, 203–214.CrossRefGoogle Scholar
  5. Ang, R. P., &Yeo, L. S. (2004). Asian secondary school students’ help-seeking behaviour and preferences for counsellor characteristics.Pastoral Care in Education,22, 40–48.CrossRefGoogle Scholar
  6. Bay, S. D., &Pazzani, M. J. (1999). Detecting change in categorical data: Mining contrast sets. In U. Fayyad, S. Chaudhuri, & D. Madigan (Eds.),Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 302–306). New York: ACM Press.CrossRefGoogle Scholar
  7. Bose, I., &Mahapatra, R. K. (2001). Business data mining—a machine learning perspective.Information & Management,39, 211–225.CrossRefGoogle Scholar
  8. Brosette, S. E., Sprague, A. P., Hardin, J. M., Waites, K. B., Jones, W. T., &Moser, S. A. (1998). Association rules and data mining in hospital infection control and public health surveillance.Journal of the American Medical Informatics Association,5, 373–381.Google Scholar
  9. Chatfield, C. (1995). Model uncertainty, data mining, and statistical inference.Journal of the Royal Statistical Society: Series A,158, 419–466.Google Scholar
  10. Chen, T.-J., Chou, L.-F., &Hwang, S.-J. (2003). Application of a datamining technique to analyze coprescription patterns for antacids in Taiwan.Clinical Therapeutics,25, 2453–2463.CrossRefPubMedGoogle Scholar
  11. Cheung, F. M. (1984). Preferences in help-seeking among Chinese students.Culture, Medicine, & Psychiatry,8, 371–380.CrossRefGoogle Scholar
  12. Doddi, S., Marathe, A., Ravi, S. S., &Torney, D. C. (2001). Discovery of association rules in medical data.Medical Informatics & The Internet in Medicine,26, 25–33.Google Scholar
  13. Dubow, E. F., Lovko, K. R., &Kausch, D. F. (1990). Demographic differences in adolescents’ health concerns and perceptions of helping agents.Journal of Clinical & Child Psychology,19, 44–54.CrossRefGoogle Scholar
  14. Dunham, M. H. (2003).Data mining: Introductory and advanced topics. Upper Saddle River, NJ: Prentice Hall/Pearson Education.Google Scholar
  15. Fayyad, U., Piatetsky-Shapiro, G., &Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data.Communications of the ACM,39, 27–34.CrossRefGoogle Scholar
  16. Fukuhara, M. (1986). The attitude of students towards consultation/ counseling.School Psychology International,7, 76–82.CrossRefGoogle Scholar
  17. Glymour, C., Madigan, D., Pregibon, D., &Smyth, P. (1997). Statistical themes and lessons for data mining.Data Mining & Knowledge Discovery,1, 11–28.CrossRefGoogle Scholar
  18. Han, J., &Kamber, M. (2001).Data mining: Concepts and techniques. San Francisco: Morgan Kaufmann.Google Scholar
  19. Hand, D. J., &Blunt, G. (2001). Prospecting for gems in credit card data.IMA Journal of Management Mathematics,12, 173–200.CrossRefGoogle Scholar
  20. Ivkovic, S., Yearwood, J., &Stranieri, A. (2002). Discovering interesting association rules from legal databases.Information & Communications Technology Law,11, 35–47.CrossRefGoogle Scholar
  21. Ivkovic, S., Yearwood, J., &Stranieri, A. (2003). Visualizing association rules for feedback within the legal system. In G. Sartor (Ed.),Proceedings of the 9th International Conference on Artificial Intelligence and Law (pp. 214–223). New York: ACM Press.CrossRefGoogle Scholar
  22. Kline, R. B. (2004).Beyond significance testing: Reforming data analysis methods in behavioral research. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  23. Klösgen, W., &Żytkow, J. M. (2002).Handbook of data mining and knowledge discovery. Oxford: Oxford University Press.Google Scholar
  24. Langley, P., &Simon, H. A. (1995). Applications of machine learning and rule induction.Communications of the ACM,38, 54–64.CrossRefGoogle Scholar
  25. Leong, F. T. L. (1986). Counseling and psychotherapy with Asian Americans: Review of the literature.Journal of Counseling Psychology,33, 196–206.CrossRefGoogle Scholar
  26. Leong, F. T. L., &Lau, A. S. L. (2001). Barriers to providing effective mental health services to Asian Americans.Mental Health Services Research,3, 201–214.CrossRefPubMedGoogle Scholar
  27. Ma, Y., Liu, B., Wong, C. K., Yu, P. S., &Lee, S. M. (2000). Targeting the right students using data mining. In R. Ramakrishnan, S. Stolfo, R. Bayardo, & I. Parsa (Eds.),Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 457–464). New York: ACM Press.CrossRefGoogle Scholar
  28. Mau, W.-C., &Jepsen, D. A. (1988). Attitudes towards counselors and counseling processes: A comparison of Chinese and American graduate students.Journal of Counseling & Development,67, 189–192.Google Scholar
  29. Offer, D., Howard, K. I., Schonert, K. A., &Ostrov, E. (1991). T whom do adolescents turn for help? Differences between disturbed and nondisturbed adolescents.Journal of the American Academy of Child & Adolescent Psychiatry,30, 623–630.CrossRefGoogle Scholar
  30. Pendharkar, P. C., Rodger, J. A., Yaverbaum, G. J., Herman, N., &Benner, M. (1999). Association, statistical, mathematical and neural approaches for mining breast cancer patterns.Expert Systems With Applications,17, 223–232.CrossRefGoogle Scholar
  31. Selvin, H. C., &Stuart, A. (1966). Data dredging procedures in survey analysis.American Statistician,20, 20–23.CrossRefGoogle Scholar
  32. SPSS (2005).Clementine [Computer software]. Retrieved July 2, 2005, from Scholar
  33. Suan, L. V., &Tyler, J. D. (1990). Mental health values and preference for mental health resources of Japanese-American and Caucasian-American students.Professional Psychology: Research & Practice,21, 291–296.CrossRefGoogle Scholar
  34. Sue, D. W., &Sue, D. (1999).Counseling the culturally different: Theory and practice (3rd ed.). New York: Wiley.Google Scholar
  35. Tishby, O., Turel, M., Gumpel, O., Pinus, U., Ben Lavy, S., Winokour, M., &Sznajderman, S. (2001). Help-seeking attitudes among Israeli adolescents.Adolescence,36, 249–264.PubMedGoogle Scholar
  36. Tukey, J. W. (1977).Exploratory data analysis. Reading, MA: Addison-Wesley.Google Scholar
  37. Wang, Y.-F., Chuang, Y.-L., Hsu, M.-H., &Keh, H.-C. (2004). A personalized recommender system for the cosmetic business.Expert Systems With Applications,26, 427–434.CrossRefGoogle Scholar
  38. Yeh, C. J. (2002). Taiwanese students’ gender, age, interdependent and independent self-construal, and collective self-esteem as predictors of professional psychological help-seeking attitudes.Cultural Diversity & Ethnic Minority Psychology,8, 19–29.CrossRefGoogle Scholar
  39. Zaïane, O. R., &Luo, J. (2001). Towards evaluating learners’ behavior in a Web-based distance learning environment. In T. Okamoto, R. Hartley, M. Kinshuk, & J. Klus (Eds.),IEEE International Conference on Advanced Learning Technologies (ICALT’01): Issues, achievements and challenges (pp. 357–360). Los Alamitos, CA: IEEE Computer Society Press.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2007

Authors and Affiliations

  1. 1.Division of Information Studies, School of Communication and InformationNanyang Technological UniversitySingapore

Personalised recommendations