Akkad, D. A., Jagiello, P., Szyld, P., Goedde, R., Wieczorek, S., Gross, W. L., &Epplen, J. T. (2006). Promoter polymorphism rs3087456 in the MHC class II transactivator gene is not associated with susceptibility for selected autoimmune diseases in German patient groups.International Journal of Immunogenetics,33, 59–61.
Article
PubMed
Google Scholar
Back, M. D., Schmukle, S. C., &Egloff, B. (2005). Measuring taskswitching ability in the Implicit Association Test.Experimental Psychology,52, 167–179.
PubMed
Google Scholar
Baeza, J. A., &Stotz, W. (2003). Host-use and selection of differently colored sea anemones by the symbiotic crabAllopetrolisthes spinifrons.Journal of Experimental Marine Biology & Ecology,284, 25–39.
Article
Google Scholar
Barabesi, L., &Greco, L. (2002). A note on the exact computation of the Student t, Snedecor F, and sample correlation coefficient distribution functions.Journal of the Royal Statistical Society,51D, 105–110.
Article
Google Scholar
Berti, S., Münzer, S., Schröger, E., &Pechmann, T. (2006). Different interference effects in musicians and a control group.Experimental Psychology,53, 111–116.
PubMed
Google Scholar
Bradley, D. R., Russell, R. L., &Reeve, C. P. (1998). The accuracy of four approximations to noncentralF. Behavior Research Methods, Instruments, & Computers,30, 478–500.
Article
Google Scholar
Bredenkamp, J. (1969). Über die Anwendung von Signifikanztests bei Theorie-testenden Experimenten [The application of significance tests in theory-testing experiments].Psychologische Beiträge,11, 275–285.
Google Scholar
Bredenkamp, J., &Erdfelder, E. (1985). Multivariate Varianzanalyse nach dem V-Kriterium [Multivariate analysis of variance based on the V-criterion].Psychologische Beiträge,27, 127–154.
Google Scholar
Buchner, A., Erdfelder, E., &Faul, F. (1996). Teststärkeanalysen [Power analyses]. In E. Erdfelder, R. Mausfeld, T. Meiser, & G. Rudinger (Eds.),Handbuch Quantitative Methoden [Handbook of quantitative methods] (pp. 123–136). Weinheim, Germany: Psychologie Verlags Union.
Google Scholar
Buchner, A., Erdfelder, E., & Faul, F. (1997). How to use G*Power [Computer manual]. Available at www.psycho.uni-duesseldorf.de/aap/projects/gpower/how_to_use_gpower.html.
Busbey, A. B. I. (1999). Macintosh shareware/freeware earthscience software.Computers & Geosciences,25, 335–340.
Article
Google Scholar
Cohen, J. (1988).Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
Google Scholar
D’Agostino, R. B., Chase, W., &Belanger, A. (1988). The appropriateness of some common procedures for testing the equality of two independent binomial populations.American Statistician,42, 198–202.
Article
Google Scholar
Erdfelder, E. (1984). Zur Bedeutung und Kontrolle desb-Fehlers bei der inferenzstatistischen Prüfung log-linearer Modelle [Significance and control of theb error in statistical tests of log-linear models].Zeitschrift für Sozialpsychologie,15, 18–32.
Google Scholar
Erdfelder, E., Buchner, A., Faul, F., &Brandt, M. (2004). GPOWER: Teststärkeanalysen leicht gemacht [Power analyses made easy]. In E. Erdfelder & J. Funke (Eds.),Allgemeine Psychologie und deduktivistische Methodologie [Experimental psychology and deductive methodology] (pp. 148–166). Göttingen: Vandenhoeck & Ruprecht.
Google Scholar
Erdfelder, E., Faul, F., &Buchner, A. (1996). GPOWER: A general power analysis program.Behavior Research Methods, Instruments, & Computers,28, 1–11.
Article
Google Scholar
Erdfelder, E., Faul, F., &Buchner, A. (2005). Power analysis for categorical methods. In B. S. Everitt & D. C. Howell (Eds.),Encyclopedia of statistics in behavioral science (pp. 1565–1570). Chichester, U.K.: Wiley.
Google Scholar
Farrington, C. P., &Manning, G. (1990). Test statistics and sample size formulae for comparative binomial trials with null hypothesis of non-zero risk difference or non-unity relative risk.Statistics in Medicine,9, 1447–1454.
Article
PubMed
Google Scholar
Field, A. P. (2005).Discovering statistics with SPSS (2nd ed.). London: Sage.
Google Scholar
Fleiss, J. L. (1981).Statistical methods for rates and proportions (2nd ed.). New York: Wiley.
Google Scholar
Frings, C., &Wentura, D. (2005). Negative priming with masked distractor-only prime trials: Awareness moderates negative priming.Experimental Psychology,52, 131–139.
PubMed
Google Scholar
Gart, J. J., &Nam, J. (1988). Approximate interval estimation of the ratio in binomial parameters: A review and correction for skewness.Biometrics,44, 323–338.
Article
PubMed
Google Scholar
Gart, J. J., &Nam, J. (1990). Approximate interval estimation of the difference in binomial parameters: Correction for skewness and extension to multiple tables.Biometrics,46, 637–643.
Article
PubMed
Google Scholar
Geisser, S., &Greenhouse, S. W. (1958). An extension of Box’s results on the use of theF distribution in multivariate analysis.Annals of Mathematical Statistics,29, 885–891.
Article
Google Scholar
Gerard, P. D., Smith, D. R., &Weerakkody, G. (1998). Limits of retrospective power analysis.Journal of Wildlife Management,62, 801–807.
Article
Google Scholar
Gigerenzer, G., Krauss, S., &Vitouch, O. (2004). The null ritual: What you always wanted to know about significance testing but were afraid to ask. In D. Kaplan (Ed.),The SAGE handbook of quantitative methodology for the social sciences (pp. 391–408). Thousand Oaks, CA: Sage.
Google Scholar
Gleissner, U., Clusmann, H., Sassen, R., Elger, C. E., &Helmstaedter, C. (2006). Postsurgical outcome in pediatric patients with epilepsy: A comparison of patients with intellectual disabilities, subaverage intelligence, and average-range intelligence.Epilepsia,47, 406–414.
Article
PubMed
Google Scholar
Goldstein, R. (1989). Power and sample size via MS/PC-DOS computers.American Statistician,43, 253–262.
Article
Google Scholar
Hager, W. (2006). Die Fallibilität empirischer Daten und die Notwendigkeit der Kontrolle von falschen Entscheidungen [The fallibility of empirical data and the need for controlling for false decisions].Zeitschrift für Psychologie,214, 10–23.
Article
Google Scholar
Haseman, J. K. (1978). Exact sample sizes for use with the Fisher—Irwin test for 2 × 2 tables.Biometrics,34, 106–109.
Article
Google Scholar
Hoenig, J. N., &Heisey, D. M. (2001). The abuse of power: The pervasive fallacy of power calculations for data analysis.American Statistician,55, 19–24.
Article
Google Scholar
Hoffmann, J., &Sebald, A. (2005). Local contextual cuing in visual search.Experimental Psychology,52, 31–38.
PubMed
Google Scholar
Huynh, H., &Feldt, L. S. (1970). Conditions under which mean square ratios in repeated measurements designs have exactF-distribution.Journal of the American Statistical Association,65, 1582–1589.
Article
Google Scholar
Keppel, G., &Wickens, T. D. (2004).Design and analysis. A researcher’s handbook (4th ed.). Upper Saddle River, NJ: Pearson Education International.
Google Scholar
Kornbrot, D. E. (1997). Review of statistical shareware G*Power.British Journal of Mathematical & Statistical Psychology,50, 369–370.
Google Scholar
Kromrey, J., &Hogarty, K. Y. (2000). Problems with probabilistic hindsight: A comparison of methods for retrospective statistical power analysis.Multiple Linear Regression Viewpoints,26, 7–14.
Google Scholar
Lenth, R. V. (2001). Some practical guidelines for effective sample size determination.American Statistician,55, 187–193.
Article
Google Scholar
Levin, J. R. (1997). Overcoming feelings of powerlessness in “aging” researches: A primer on statistical power in analysis of variance designs.Psychology & Aging,12, 84–106.
Article
Google Scholar
McKeon, J. J. (1974).F approximations to the distribution of Hotelling’sT02.Biometrika,61, 381–383.
Google Scholar
Mellina, E., Hinch, S. G., Donaldson, E. M., &Pearson, G. (2005). Stream habitat and rainbow trout (Oncorhynchus mykiss) physiological stress responses to streamside clear-cut logging in British Columbia.Canadian Journal of Forest Research,35, 541–556.
Article
Google Scholar
Miettinen, O., &Nurminen, M. (1985). Comparative analysis of two rates.Statistics in Medicine,4, 213–226.
Article
PubMed
Google Scholar
Müller, J., Manz, R., &Hoyer, J. (2002). Was tun, wenn die Teststärke zu gering ist? Eine praktikable Strategie für Prä-Post-Designs [What to do if statistical power is low? A practical strategy for prepost-designs].Psychotherapie, Psychosomatik, Medizinische Psychologie,52, 408–416.
Article
PubMed
Google Scholar
Muller, K. E., &Barton, C. N. (1989). Approximate power for repeatedmeasures ANOVA lacking sphericity.Journal of the American Statistical Association,84, 549–555.
Article
Google Scholar
Muller, K. E., LaVange, L. M., Landesman-Ramey, S., &Ramey, C. T. (1992). Power calculations for general linear multivariate models including repeated measures applications.Journal of the American Statistical Association,87, 1209–1226.
Article
Google Scholar
Muller, K. E., &Peterson, B. L. (1984). Practical methods for computing power in testing the multivariate general linear hypothesis.Computational Statistics & Data Analysis,2, 143–158.
Article
Google Scholar
Myers, J. L., &Well, A. D. (2003).Research design and statistical analysis (2nd ed.). Mahwah, NJ: Erlbaum.
Google Scholar
O’Brien, R. G., &Kaiser, M. K. (1985). MANOVA method for analyzing repeated measures designs: An extensive primer.Psychological Bulletin,97, 316–333.
Article
PubMed
Google Scholar
O’Brien, R. G., &Muller, K. E. (1993). Unified power analysis fort-tests through multivariate hypotheses. In L. K. Edwards (Ed.),Applied analysis of variance in behavioral science (pp. 297–344). New York: Dekker.
Google Scholar
O’Brien, R. G., & Shieh, G. (1999).Pragmatic, unifying algorithm gives power probabilities for common F tests of the multivariate general linear hypothesis. Available at www.bio.ri.ccf.org/UnifyPow.
Ortseifen, C., Bruckner, T., Burke, M., &Kieser, M. (1997). An overview of software tools for sample size determination.Informatik, Biometrie & Epidemiologie in Medizin & Biologie,28, 91–118.
Google Scholar
Ostle, B., &Malone, L. C. (1988).Statistics in research: Basic concepts and techniques for research workers (4th ed.). Ames: Iowa State Press.
Google Scholar
Pillai, K. C. S., &Mijares, T. A. (1959). On the moments of the trace of a matrix and approximations to its distribution.Annals of Mathematical Statistics,30, 1135–1140.
Article
Google Scholar
Pillai, K. C. S., &Samson, P., Jr. (1959). On Hotelling’s generalization ofT2.Biometrika,46, 160–168.
Google Scholar
Quednow, B. B., Kühn, K.-U., Stelzenmueller, R., Hoenig, K., Maier, W., &Wagner, M. (2004). Effects of serotonergic and noradrenergic antidepressants on auditory startle response in patients with major depression.Psychopharmacology,175, 399–406.
PubMed
Google Scholar
Rao, C. R. (1951). An asymptotic expansion of the distribution of Wilks’s criterion.Bulletin of the International Statistical Institute,33, 177–180.
Google Scholar
Rasch, B., Friese, M., Hofmann, W. J., &Naumann, E. (2006a).Quantitative Methoden 1: Einführung in die Statistik (2. Auflage) [Quantitative methods 1: Introduction to statistics (2nd ed.)]. Heidelberg, Germany: Springer.
Google Scholar
Rasch, B., Friese, M., Hofmann, W. J., &Naumann, E. (2006b).Quantitative Methoden 2: Einführung in die Statistik (2. Auflage) [Quantitative methods 2: Introduction to statistics (2nd ed.)]. Heidelberg, Germany: Springer.
Google Scholar
Rencher, A. C. (1998).Multivariate statistical inference and applications. New York: Wiley.
Google Scholar
Richardson, J. T. E. (1996). Measures of effect size.Behavior Research Methods, Instruments, & Computers,28, 12–22.
Article
Google Scholar
Scheffé, H. (1959).The analysis of variance. New York: Wiley.
Google Scholar
Schwarz, W., &Müller, D. (2006). Spatial associations in numberrelated tasks: A comparison of manual and pedal responses.Experimental Psychology,53, 4–15.
PubMed
Google Scholar
Sheppard, C. (1999). How large should my sample be? Some quick guides to sample size and the power of tests.Marine Pollution Bulletin,38, 439–447.
Article
Google Scholar
Shieh, G. (2003). A comparative study of power and sample size calculations for multivariate general linear models.Multivariate Behavioral Research,38, 285–307.
Article
Google Scholar
Smith, R. E., &Bayen, U. J. (2005). The effects of working memory resource availability on prospective memory: A formal modeling approach.Experimental Psychology,52, 243–256.
PubMed
Google Scholar
Steidl, R. J., Hayes, J. P., &Schauber, E. (1997). Statistical power analysis in wildlife research.Journal of Wildlife Management,61, 270–279.
Article
Google Scholar
Suissa, S., &Shuster, J. J. (1985). Exact unconditional sample sizes for 2 × 2 binomial trial.Journal of the Royal Statistical Society A,148, 317–327.
Article
Google Scholar
Thomas, L., &Krebs, C. J. (1997). A review of statistical power analysis software.Bulletin of the Ecological Society of America,78, 126–139.
Google Scholar
Upton, G. J. G. (1982). A comparison of alternative tests for the 2 3 2 comparative trial.Journal of the Royal Statistical Society A,145, 86–105.
Article
Google Scholar
Westermann, R., &Hager, W. (1986). Error probabilities in educational and psychological research.Journal of Educational Statistics,11, 117–146.
Article
Google Scholar
Zumbo, B. D., &Hubley, A. M. (1998). A note on misconceptions concerning prospective and retrospective power.The Statistician,47, 385–388.
Google Scholar