Behavior Research Methods

, Volume 39, Issue 4, pp 835–843 | Cite as

The HIVE: A huge immersive virtual environment for research in spatial cognition

  • David WallerEmail author
  • Eric Bachmann
  • Eric Hodgson
  • Andrew C. Beall


Research in human spatial cognition has benefited from the advent of virtual environment (VE) technology; however, few VE systems currently enable users to move realistically over large physical spaces. Here, we describe a huge immersive virtual environment (HIVE) that offers untethered tracking of users in a 570 m2 physical space. This large tracking area allows users to move through virtual worlds in the same manner in which they move in the real world and enables behavioral research in spatial cognition examining mental processes that require extensive movement through an environment. We provide a detailed description of this system, and report an experiment examining distance estimation in virtual environments that illustrates the utility of the HIVE.


Virtual Reality Virtual Environment Application Programming Interface Spatial Cognition Egocentric Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Badique, E., Cavazza, M., Klinker, G., Mair, G., Sweeney, T., Thalmann, D., et al. (2002). Entertainment applications of virtual environments. In K. M. Stanney (Ed.),Handbook of virtual environments: Design, implementation, and applications (pp. 1143–1166). Mahwah, NJ: Erlbaum.Google Scholar
  2. Beritoff, J. S. (1965).Neural mechanisms of higher vertebrate behavior. Boston: Little, Brown.Google Scholar
  3. Biocca, F. (1992). Communication within virtual reality: Creating a space for research.Journal of Communication,42, 5–22.CrossRefGoogle Scholar
  4. Blascovich, J., Loomis, J., Beall, A. C., Swinth, K. R., Hoyt, C. L., &Bailenson, J. N. (2002). Immersive virtual environment technology as a methodological tool for social psychology.Psychological Inquiry,13, 103–124.CrossRefGoogle Scholar
  5. Chance, S. S., Gaunet, F., Beall, A. C., &Loomis, J. M. (1998). Locomotion mode affects the updating of objects encountered during travel: The contribution of vestibular and proprioceptive inputs to path integration.Presence: Teleoperators & Virtual Environments,7, 168–178.CrossRefGoogle Scholar
  6. Chapuis, N., Durup, M., &Thinus-Blanc, C. (1987). The role of exploratory experience in a shortcut task by golden hamsters.Animal Learning & Behavior,15, 174–178.CrossRefGoogle Scholar
  7. Christou, C. G., &Bülthoff, H. H. (1999). View dependence in scene recognition after active learning.Memory & Cogniton,27, 996–1007.CrossRefGoogle Scholar
  8. Creem, S. H., &Proffitt, D. R. (1998). Two memories for geographical slant: Separation and interdependence of action and awareness.Psychonomic Bulletin & Review,5, 22–36.CrossRefGoogle Scholar
  9. Creem-Regehr, S. H., Willemsen, P., Gooch, A. A., &Thompson, W. B. (2005). The influence of restricted viewing conditions on egocentric distance perception: Implications for real and virtual environments.Perception,34, 191–204.CrossRefPubMedGoogle Scholar
  10. D’Zmura, M., Colantoni, P., &Seyranian, G. (2000). Virtual environments with four or more spatial dimensions.Presence: Teleoperators & Virtual Environments,9, 616–631.CrossRefGoogle Scholar
  11. Easton, R. D., &Sholl, M. J. (1995). Object-array structure, frames of reference, and retrieval of spatial knowledge.Journal of Experimental Psychology: Learning, Memory, & Cognition,21, 483–500.CrossRefGoogle Scholar
  12. Foley, J. M., Ribeiro-Filho, N. P., &Da Silva, J. A. (2003). Visual perception of extent and the geometry of visual space.Vision Research,43, 2721–2733.CrossRefGoogle Scholar
  13. Foo, P., Warren, W. H., Duchon, A., &Tarr, M. J. (2005). Do humans integrate routes into a cognitive map? Map- vs. landmark-based navigation of novel shortcuts.Journal of Experimental Psychology: Learning, Memory, & Cognition,31, 195–215.CrossRefGoogle Scholar
  14. Gibson, E. J., &Bergman, R. (1954). The effect of training on absolute estimation of distance over the ground. Journal of Experimental Psychology,48, 474–482.CrossRefGoogle Scholar
  15. Glasauer, S., Amorim, M.-A., Viaud-Delmon, I., &Berthoz, A. (2002). Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path.Experimental Brain Research,145, 489–497.CrossRefGoogle Scholar
  16. Hollerbach, J. M. (2002). Locomotion interfaces. In K. M. Stanney (Ed.),Handbook of virtual environments: Design, implementation, and applications (pp. 239–254). Mahwah, NJ: Erlbaum.Google Scholar
  17. Israel, I., Chapuis, N., Glasauer, S., Charade, O., &Berthoz, A. (1993). Estimation of passive horizontal linear whole-body displacement in humans. Journal of Neurophysiology,70, 1270–1273.PubMedGoogle Scholar
  18. Jacobs, J. W., Laurance, H. E., &Thomas, K. G. F. (1997). Place learning in virtual space I: Acquisition, overshadowing, and transfer.Learning & Motivation,28, 521–541.CrossRefGoogle Scholar
  19. Jürgens, R., Boß, T., &Becker, W. (1999). Estimation of self-turning in the dark: Comparison between active and passive rotation.Experimental Brain Research,128, 491–504.CrossRefGoogle Scholar
  20. Klatzky, R. L., Loomis, J. M., Beall, A. C., Chance, S. S., &Golledge, R. G. (1998). Updating an egocentric spatial representation during real, imagined, and virtual locomotion.Psychological Science,9, 293–298.CrossRefGoogle Scholar
  21. Knapp, J. M. (1999). The visual perception of egocentric distance in virtual environments.Dissertation Abstracts International,61, 5034B. (AAT9987005)Google Scholar
  22. Knapp, J. M., &Loomis, J. M. (2004). Limited field of view of headmounted displays is not the cause of distance underestimation in virtual environments.Presence: Teleoperators & Virtual Environments,13, 572–577.CrossRefGoogle Scholar
  23. Lambrey, S., &Berthoz, A. (2003). Combination of conflicting visual and non-visual information for estimating actively performed body turns in virtual reality.International Journal of Psychophysiology,50, 101–115.CrossRefPubMedGoogle Scholar
  24. Lappin, J. S., Shelton, A. L., &Rieser, J. J. (2006). Environmental context influences visually perceived distance.Perception & Psychophysics,68, 571–581.CrossRefGoogle Scholar
  25. Lawson, B. D., Graeber, D. A., Mead, A. M., &Muth, E. R. (2002). Signs and symptoms of human syndromes associated with synthetic experiences. In K. M. Stanney (Ed.),Handbook of virtual environments: Design, implementation, and applications (pp. 589–618). Mahwah, NJ: Erlbaum.Google Scholar
  26. Loomis, J. M., Blascovich, J. J., &Beall, A. C. (1999). Immersive virtual environment technology as a basic research tool in psychology.Behavior Research Methods, Instruments, & Computers,31, 557–564.CrossRefGoogle Scholar
  27. Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., &Fry, P. A. (1993). Non-visual navigation by blind and sighted: Assessment of path integration ability.Journal of Experimental Psychology: General,122, 73–91.CrossRefGoogle Scholar
  28. Loomis, J. M., &Knapp, J. M. (2003). Visual perception of egocentric distance in real and virtual environments. In L. J. Hettinger & M. W. Haas (Eds.),Virtual and adaptive environments (pp. 21–46). Mahwah, NJ: Erlbaum.Google Scholar
  29. Montello, D. R. (1993). Scale and multiple psychologies of space. In A. U. Frank & I. Campari (Eds.),Spatial information theory: A theoretical basis for GIS (pp. 312–321). Berlin: Springer.Google Scholar
  30. Mou, W., McNamara, T. P., Valiquette, C. M., &Rump, B. (2004). Allocentric and egocentric updating of spatial memories.Journal of Experimental Psychology: Learning, Memory, & Cognition,30, 142–157.CrossRefGoogle Scholar
  31. Nitzsche, N., Hanebeck, U. D., &Schmidt, G. (2004). Motion compression for telepresent walking in large target environments.Presence: Teleoperators & Virtual Environments,13, 44–60.CrossRefGoogle Scholar
  32. Péruch, P., &Gaunet, F. (1998). Virtual environments as a promising tool for investigating human spatial cognition.Current Psychology of Cognition,17, 881–899.Google Scholar
  33. Plumert, J. M., Kearney, J. K., & Cremer, J. F. (2004, August). Distance perception in real and virtual environments.Proceedings of the First Symposium on Applied Perception in Graphics and Visualization (pp. 27–34). Los Angeles, CA.Google Scholar
  34. Potegal, M. (1982). Vestibular and neostriatal contributions to spatial orientation. In M. Potegal (Ed.),Spatial abilities: Development and physiological foundations (pp. 361–387). New York: Academic Press.Google Scholar
  35. Presson, C. C., DeLange, N., &Hazelrigg, M. D. (1989). Orientation specificity in spatial memory: What makes a path different from a map of the path?Journal of Experimental Psychology: Learning, Memory, & Cognition,15, 887–897.CrossRefGoogle Scholar
  36. Razzaque, S., Kohn, Z., & Whitton, M. C. (2001, September). Redirected walking.Proceedings of Eurographics (pp. 289–294). Manchester, U.K.Google Scholar
  37. Richardson, A. R., &Waller, D. (2005). The effect of feedback training on distance estimation in virtual environments.Applied Cognitive Psychology,19, 1089–1108.CrossRefGoogle Scholar
  38. Richardson, A. R., &Waller, D. (2007). Interaction with an immersive virtual environment corrects users’ distance estimates.Human Factors,49, 507–517.CrossRefPubMedGoogle Scholar
  39. Rieser, J. J., Ashmead, D., Talor, C., &Youngquist, G. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets.Perception,19, 675–689.CrossRefPubMedGoogle Scholar
  40. Rossano, M. J., &Moak, J. (1998). Spatial representations acquired from computer models: Cognitive load, orientation specificity, and the acquisition of survey knowledge.British Journal of Psychology,89, 481–497.Google Scholar
  41. Seidel, R. J., &Chatelier, P. R. (1997).Virtual reality, training’s future?: Perspectives on virtual reality and related emerging technologies. New York: Plenum.Google Scholar
  42. Slater, M., Usoh, M., & Steed, A. (1994, August). Steps and ladders in virtual reality.Proceedings of the ACM Conference on Virtual Reality Software and Technology (pp. 45–54). Singapore.Google Scholar
  43. Stanton, D. E. B., Wilson, P. N., &Foreman, N. (2003). Human shortcut performance in a computer-simulated maze: A comparative study.Spatial Cognition & Computation,3, 315–329.CrossRefGoogle Scholar
  44. Stone, R. J. (2002). Applications of virtual environments: An overview. In K. M. Stanney (Ed.),Handbook of virtual environments: Design, implementation, and applications (pp. 827–856). Mahwah, NJ: Erlbaum.Google Scholar
  45. Tarr, M. J., &Warren, W. H. (2002). Virtual reality in behavioral neuroscience and beyond.Nature Neuroscience,5, 1089–1092.CrossRefPubMedGoogle Scholar
  46. Teghtsoonian, R., &Teghtsoonian, M. (1970). Scaling apparent distance in a natural outdoor setting.Psychonomic Science,21, 215–216.Google Scholar
  47. Telford, L., Howard, I. P., &Ohmi, M. (1995). Heading judgments during active and passive self-motion.Experimental Brain Research,104, 502–510.CrossRefGoogle Scholar
  48. Thompson, W. B., Willemsen, P., Gooch, A. A., Creem-Regehr, S. H., Loomis, J. M., &Beall, A. C. (2004). Does the quality of the computer graphics matter when judging distances in visually immersive environments?Presence: Teleoperators & Virtual Environments,13, 560–571.CrossRefGoogle Scholar
  49. Thomson, J. A. (1983). Is continuous visual monitoring necessary in visually guided locomotion?Journal of Experimental Psychology: Human Perception & Performance,9, 427–443.CrossRefGoogle Scholar
  50. Tlauka, M., &Wilson, P. N. (1994). The effect of landmarks on routelearning in a computer-simulated environment.Journal of Environmental Psychology,14, 305–313.CrossRefGoogle Scholar
  51. Waller, D., &Greenauer, N. (2007). The role of body-based sensory information in the acquisition of enduring spatial representations.Psychological Research,71, 322–332.CrossRefPubMedGoogle Scholar
  52. Waller, D., &Hodgson, E. (2006). Transient and enduring spatial representations under disorientation and self-rotation.Journal of Experimental Psychology: Learning, Memory, & Cognition,32, 867–882.CrossRefGoogle Scholar
  53. Waller, D., Hunt, E., &Knapp, D. (1998). The transfer of spatial knowledge in virtual environment training.Presence: Teleoperators & Virtual Environments,7, 129–143.CrossRefGoogle Scholar
  54. Waller, D., Loomis, J. M., Golledge, R. G., &Beall, A. C. (2000). Place learning in humans: The role of distance and direction information.Spatial Cognition & Computation,2, 333–354.CrossRefGoogle Scholar
  55. Weatherford, D. L. (1982). Spatial cognition as a function of size and scale of the environment. In R. Cohen (Ed.),New directions for child development: Vol. 15. Children’s conceptions of spatial relationships (pp. 5–18). San Francisco: Jossey-Bass.Google Scholar
  56. Whitton, M. C., Cohn, J. V., Feasel, J., Zimmons, P., Razzaque, S., Poulton, S. J., et al. (2005). Comparing VE locomotion interfaces.Proceedings of the IEEE Virtual Reality Conference (pp. 123–130). Los Alamitos, CA: IEEE.Google Scholar
  57. Wilson, P. N. (1997). Use of virtual reality computing in spatial learning research. In N. Foreman & R. Gillet (Eds.),A handbook of spatial research paradigms and methodologies: Vol. 1. Spatial cognition in the child and adult (pp. 181–206). Hove, U.K.: Psychology Press/Erlbaum.Google Scholar
  58. Wilson, P. N., Foreman, N., &Tlauka, M. (1997). Transfer of spatial information from a virtual to real environment.Human Factors,39, 526–531.CrossRefGoogle Scholar
  59. Wilson, P. N., &Péruch, P. (2002). The influence of interactivity and attention on spatial learning in a desk-top virtual environment.Current Psychology of Cognition,21, 601–633.Google Scholar
  60. Winn, W., Hoffman, H., Hollander, A., Osberg, K., Rose, H., &Char, P. (1999). Student-built virtual environments.Presence: Teleoperators & Virtual Environments,8, 283–292.CrossRefGoogle Scholar
  61. Witmer, B. G., Bailey, J. H., Knerr, B. W., &Parsons, K. C. (1996). Virtual spaces and real world places: Transfer of route knowledge.International Journal of Human-Computer Studies,45, 413–428.CrossRefGoogle Scholar
  62. Witmer, B. G., &Kline, P. (1998). Judging perceived and traversed distance in virtual environments.Presence: Teleoperators & Virtual Environments,7, 144–167.CrossRefGoogle Scholar
  63. Witmer, B. [G.], &Sadowski, W., Jr. (1998). Nonvisually guided locomotion to a previously viewed target in real and virtual environments.Human Factors,40, 478–488.CrossRefGoogle Scholar
  64. Yardley, L., &Higgins, M. (1998). Spatial updating during rotation: The role of vestibular information and mental activity.Journal of Vestibular Research,8, 435–442.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2007

Authors and Affiliations

  • David Waller
    • 1
    Email author
  • Eric Bachmann
    • 1
  • Eric Hodgson
    • 1
  • Andrew C. Beall
    • 2
  1. 1.Department of PsychologyMiami UniversityOxford
  2. 2.University of CaliforniaSanta Barbara

Personalised recommendations