Advertisement

Behavior Research Methods

, Volume 39, Issue 4, pp 802–810 | Cite as

The virtual haptic display: A device for exploring 2-D virtual shapes in the tactile modality

  • Jason S. Chan
  • Thorsten Maucher
  • Johannes Schemmel
  • Dana Kilroy
  • Fiona N. Newell
  • Karlheinz Meier
Article

Abstract

In order to understand better the processes involved in the perception of shape through touch, some element of control is required over the nature of the shape presented to the hand and the presentation timing. To that end, we have developed a cost-effective, computer-controlled apparatus for presenting haptic stimuli using active touch, known as avirtual haptic display (VHD). The operational principle behind this device is that it translates black and white visual images into topographic, 2-D taxel (tactile pixel) arrays, along the same principle using in Braille letters. These taxels are either elevated or depressed at any one time representing white and black pixel colors of the visual image, respectively. To feel the taxels, the participant places their fingers onto a carriage which can be moved over the surface of the device to reveal a virtual shape. We conducted two experiments and the results show that untrained participants are able to recognize different, simple and complex, shapes using this apparatus. The VHD apparatus is therefore ideal at presenting 2-D shapes through touch alone. Moreover, this device and its supporting software can also be used for presenting computer-controlled stimuli in cross-modal experiments.

Keywords

Target Letter Active Touch Braille Reader Haptic Object Haptic Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bach-y-Rita, P., Collins, C. C., Saunders, F. A., White, B., &Scadden, L. (1969). Vision substitution by tactile image projection.Nature,221, 963–964.CrossRefPubMedGoogle Scholar
  2. Bach-y-Rita, P., Danilov, Y., Tyler, M., &Grimm, R. J. (2005). Late human brain plasticity: Vestibular substitution with a tongue Brain-Port human-machine interface.Plasticidad y Restauración Neurológica,4, 31–34.Google Scholar
  3. Bach-y-Rita, P., Kaczmarek, K., & Meier, K. (1998, October).The tongue as a man-machine interface: A wireless communication system. Paper presented at the 1998 International Symposium on Information Theory and Its Applications, Mexico City, Mexico.Google Scholar
  4. Bach-y-Rita, P., Kaczmarek, K., Tyler, M., &Garcia-Lara, J. (1998). Form perception with a 49-point electrotactile stimulus array on the tongue.Journal of Rehabilitation Research Development,35, 427–430.Google Scholar
  5. Chan, J. S., & Newell, F. N. (2007).Measuring the distortion of haptic space using a virtual haptic device. Manuscript in preparation.Google Scholar
  6. Davison, A., &Frégnac, Y. (2006). Learning cross-modal spatial transformations through spike timing-dependent plasticity.Journal of Neuroscience,26, 5604–5615.CrossRefPubMedGoogle Scholar
  7. Ernst, M. O., &Banks, M. S. (2002). Humans integrate visual and haptic information in a statistical optimal fashion.Nature,415, 429–433.CrossRefPubMedGoogle Scholar
  8. Gibson, J. J. (1962). Observations on active touch.Psychological Review,69, 477–491.CrossRefPubMedGoogle Scholar
  9. Ikei, Y., Wakamatsu, K., &Fukuda, S. (1997). Vibratory tactile display of image-based textures.Computer Graphics & Applications, IEEE,17, 53–61.CrossRefGoogle Scholar
  10. Klatzky, R. J., &Lederman, S. J. (1993). Toward a computational model of constraint-driven exploration and haptic object identification.Perception,22, 597–621.CrossRefPubMedGoogle Scholar
  11. Lederman, S. J. (1981). The perception of surface roughness by active and passive touch.Bulletin of the Psychonomic Society,18, 253–255.Google Scholar
  12. Lederman, S. J., Browse, R. A., &Klatzky, R. J. (1988). Haptic processing of spatially distributed information.Perception & Psychophysics,44, 222–232.CrossRefGoogle Scholar
  13. Lederman, S. J., &Klatzky, R. J. (1993). Extracting object properties through haptic exploration.Acta Psychologica,84, 29–40.CrossRefPubMedGoogle Scholar
  14. Lederman, S. J., Klatzky, R. J., &Reed, C. L. (1993). Constraints on haptic integration of spatially shared object dimensions.Perception,22, 723–743.CrossRefPubMedGoogle Scholar
  15. Linvill, J., &Bliss, J. (1966). A direct translation reading aid for the blind.Proceedings of the IEEE,54, 40–51.CrossRefGoogle Scholar
  16. Loomis, J. M., Klatzky, R. L., &Lederman, S. J. (1991). Similarity of tactual and visual picture recognition with limited field of view.Perception,20, 167–177.CrossRefPubMedGoogle Scholar
  17. Millar, S. (1984). Strategy choices by young Braille readers. Perception,13, 567–579.CrossRefPubMedGoogle Scholar
  18. Millar, S. (1997).Reading by touch. London: Routledge.CrossRefGoogle Scholar
  19. Newell, F. N., Ernst, M. O., Tjan, B. S., &Bülthoff, H. H. (2001). Viewpoint dependence in visual and haptic object recognition.Psychological Science,12, 37–42.CrossRefPubMedGoogle Scholar
  20. Saida, S., Shimizu, Y., &Wake, T. (1982). Computer-controlled TVSS and some characteristics of vibrotactile letter recognition.Perceptual & Motor Skills,55, 651–653.Google Scholar
  21. Sathian, K., &Zangaladze, A. (2002). Feeling with the mind’s eye: contribution of visual cortex to tactile perception.Behavioural Brain Research,135, 127–132.CrossRefPubMedGoogle Scholar
  22. Yanagida, Y., Kakita, M., Lindeman, R. W., Kume, Y., & Tetsutani, N. (2004, March).Vibrotactile letter reading using a low-resolution tactor array. Paper presented at the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Chicago.Google Scholar
  23. Zhang, M., Weisser, V. D., Stilla, R., Prather, S. C., &Sathian, K. (2004). Multisensory cortical processing of object shape and its relation to mental imagery.Cognitive, Affective, & Behavioral Neuroscience,4, 251–259.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2007

Authors and Affiliations

  • Jason S. Chan
    • 1
  • Thorsten Maucher
    • 2
  • Johannes Schemmel
    • 2
  • Dana Kilroy
    • 1
  • Fiona N. Newell
    • 1
  • Karlheinz Meier
    • 2
  1. 1.School of Psychology and Institute of NeuroscienceTrinity CollegeDublin 2Ireland
  2. 2.University of HeidelbergHeidelbergGermany

Personalised recommendations