Video tracking in the extreme: Video analysis for nocturnal underwater animal movement

Abstract

Computer analysis of video footage is one option for recording locomotor behavior for a range of neurophysiological and behavioral studies. This technique is reasonably well established and accepted, but its use for some behavioral analyses remains a challenge. For example, filming through water can lead to reflection, and filming nocturnal activity can reduce resolution and clarity of filmed images. The aim of this study was to develop a noninvasive method for recording nocturnal activity in aquatic decapods and test the accuracy of analysis by video tracking software. We selected crayfish,Cherax destructor, because they are often active at night, they live underwater, and data on their locomotion is important for answering biological and physiological questions such as how they explore and navigate. We constructed recording arenas and filmed animals in infrared light. We then compared human observer data and software-acquired values. In this article, we outline important apparatus and software issues to obtain reliable computer tracking.

References

  1. Abrahamsson, S. (1983). Trappability, locomotion, and diel pattern of activity of the crayfishAstacus astacus andPacifastacus leniusculus Dana.Freshwater Crayfish,5, 239–253.

    Google Scholar 

  2. Arnott, S. A., Neil, D. M., &Ansell, A. D. (1998). Tail-flip mechanism and size-dependent kinematics of escape swimming in the brown shrimpCrangon crangon.Journal of Experimental Biology,201, 1771–1784.

    PubMed  Google Scholar 

  3. Barbaresi, S., &Gherardi, F. (2001). Daily activity of the whiteclawed crayfish,Austopotamobius pallipes (Lereboullet): A comparison between field and laboratory studies.Journal of Natural History,35, 1861–1871.

    Article  Google Scholar 

  4. Basil, J., &Sandeman, D. (2000). Crayfish (Cherax destructor) use tactile cues to detect and learn topographical changes in their environment.Ethology,106, 247–259.

    Article  Google Scholar 

  5. Becco, C., Vandewalle, N., Delcourt, J., &Poncin, P. (2006). Experimental evidences of a structural and dynamical transition in fish school.Physica A,367, 487–493.

    Article  Google Scholar 

  6. Belmain, S. R., Simmonds, M. S. J., &Blaney, W. M. (2000). Behavioral responses of adult deathwatch beetles,Xestobium rufovillosum de Geer (Coleoptera: Anobiidae), to light and dark.Journal of Insect Behaviour,13, 15–26.

    Article  Google Scholar 

  7. Božič, J., Skvarč, J., &Abramson, C. I. (2004). Video analysis in bee biology using Neuro Inspector.Apiacata,38, 366–374.

    Google Scholar 

  8. Camhi, J. M., &Johnson, E. N. (1999). High frequency steering maneuvers mediated by tactile cues: Antennal wall following in the cockroach.Journal of Experimental Biology,202, 631–643.

    PubMed  Google Scholar 

  9. Copp, N. H., &Jamon, M. (2001). Kinematics of rotation in place during defense turning in the crayfish Procambarus clarkii. Journal of Experimental Biology,204, 471–486.

    PubMed  Google Scholar 

  10. Dobly, A. (2001). Movement patterns of male common voles (Microtus arvalis) in a network of Y junctions: Role of distant visual cues and scent marks.Canadian Journal of Zoology,79, 2228–2238.

    Article  Google Scholar 

  11. Domenici, P., Jamon, M., &Clarac, F. (1998). Curve walking in freely moving crayfish (Procambarus clarkii).Journal of Experimental Biology,201, 1315–1329.

    PubMed  Google Scholar 

  12. Dussutour, A., Deneubourg, J., &Fourcassié, V. (2005). Amplification of individual preferences in a social context: The case of wallfollowing in ants.Proceedings of the Royal Society B,272, 705–714.

    Article  PubMed  Google Scholar 

  13. Finley, L., &Macmillan, D. L. (2002). An analysis of field potentials during different tailflip behaviours in crayfish.Marine & Freshwater Behaviour & Physiology,35, 221–233.

    Article  Google Scholar 

  14. Hazlett, B., Rittschof, D., &Ameyawakumfi, C. (1979). Variation in the caudal color spot of the crayfishOrconectes virilis (Hagen) (decapoda, cambaridae).Crustaceana,36, 56–60.

    Article  Google Scholar 

  15. Herberholz, J., Sen, M. M., &Edwards, D. H. (2004). Escape behavior and escape circuit activation in juvenile crayfish during preys—predator interactions.Journal of Experimental Biology,201, 1855–1863.

    Article  Google Scholar 

  16. Horner, A. J., Weissburg, M. J., &Derby, C. D. (2004). Dual antennular chemosensory pathways can mediate orientation by Caribbean spiny lobsters in naturalistic flow conditions.Journal of Experimental Biology,207, 3785–3796.

    Article  PubMed  Google Scholar 

  17. Jadot, C., Donnay, A., Ylieff, M., &Poncin, P. (2005). Impact implantation of a transmitter onSarpa salpa behaviour: Study with a computerized video tracking system.Journal of Fish Biology,67, 589–595.

    Article  Google Scholar 

  18. Keller, T. A., Powell, I., &Weissburg, M. J. (2003). Role of olfactory appendages in chemically mediated orientation of blue crabs.Marine Ecology Progress Series,261, 217–231.

    Article  Google Scholar 

  19. Kruk, M. R. (1997). Measuring behaviour into the twenty-first century.Trends in Neurosciences,20, 187–189.

    Article  Google Scholar 

  20. MacIver, M. A., &Nelson, M. E. (2000). Body modeling and modelbased tracking for neuroethology.Journal of Neuroscience Methods,95, 133–143.

    Article  PubMed  Google Scholar 

  21. McMahon, A., Patullo, B. W., &Macmillan, D. L. (2005). Exploration in a T-maze: The crayfishCherax destructor suggests bilateral comparison of antennal tactile information.Biological Bulletin,208, 183–188.

    Article  PubMed  Google Scholar 

  22. Merrick, J. R. (1993).Freshwater crayfish of New South Wales. Marrickville, New South Wales: Southwood Press.

    Google Scholar 

  23. Noldus, L. P. J. J., Spink, A. J., &Tegelenbosch, R. A. J. (2001). EthoVision: A versatile video tracking system for automation of behavioural experiments.Behavior Research Methods, Instruments, & Computers,33, 398–414.

    Article  Google Scholar 

  24. Noldus, L. P. J. J., Spink, A. J., &Tegelenbosch, R. A. J. (2002). Computerised video tracking, movement analysis and behaviour recognition in insects.Computers & Electronics in Agriculture,35, 201–227.

    Article  Google Scholar 

  25. Page, T., &Larimer, J. L. (1972). Entrainment of the circadian locomotor activity rhythm in crayfish: The role of the eyes and caudal photoreceptor.Journal of Comparative Physiology,78, 107–120.

    Article  Google Scholar 

  26. Panksepp, J. B., &Huber, R. (2004). Ethological analyses of crayfish behavior: A new invertebrate system for measuring the rewarding properties of psychostimulants.Behaviour & Brain Research,153, 171–180.

    Article  Google Scholar 

  27. Patullo, B. W., &Macmillan, D. L. (2006). Corners and bubblewrap: The structure and texture of surfaces influence crayfish exploratory behaviour.Journal of Experimental Biology,209, 567–575.

    Article  PubMed  Google Scholar 

  28. Rasnow, B., Assad, C., Hartmann, M. J., &Bower, J. M. (1997). Applications of multimedia computers and video mixing to neuroethology.Journal of Neuroscience Methods,76, 83–91.

    Article  PubMed  Google Scholar 

  29. Reynolds, D. R., &Riley, J. R. (2002). Remote-sensing, telemetric and computer-based technologies for investigating insect movement: A survey of existing and potential techniques.Computers & Electronics in Agriculture,35, 271–307.

    Article  Google Scholar 

  30. Sams-Dodd, F. (1995). Automation of the social interaction test by a video-tracking system: Behavioral effects of repeated phencyclidine treatment.Journal of Neuroscience Methods,59, 157–167.

    Article  PubMed  Google Scholar 

  31. Schmitz, B., &Herberholz, J. (1998). Snapping behaviour in intraspecific agonistic encounters in the snapping shrimp (Alpheus heterochaelis).Journal of Bioscience,23, 623–632.

    Article  Google Scholar 

  32. Schüder, I., Port, G., &Bennison, J. (2004). The behavioural response of slugs and snails to novel molluscicides, irritants and repellents.Pest Management Science,60, 1171–1177.

    Article  PubMed  Google Scholar 

  33. Shuranova, Z., Burmistrov, Y., &Abramson, C. I. (2005). Habituation to a novel environment in the crayfishProcambarus cubensis.Journal of Crustacean Biology,25, 488–494.

    Article  Google Scholar 

  34. Sussman, D. (1998). Behavioral measurement in perspective?Trends in Neurosciences,21, 20–21.

    PubMed  Google Scholar 

  35. Szentesi, Á., Weber, D. C., &Jermy, T. (2002). Role of visual stimuli in host and mate location of the Colorado potato beetle.Entomologia Experimentalis et Applicata,105, 141–152.

    Article  Google Scholar 

  36. Valentinčič, T., Kralj, J., Stenovec, M., Koce, A., &Caprio, J. (2000). The behavioral detection of binary mixtures of amino acids and their individual components by catfish.Journal of Experimental Biology,203, 3307–3317.

    PubMed  Google Scholar 

  37. Wu, B. M., Chan, F. H. Y., Lam, F. K., Poon, P. W. F., &Poon, A. M. S. (2000). A novel system for simultaneous monitoring of locomotor and sound activities in animals.Journal of Neuroscience Methods,101, 69–73.

    Article  PubMed  Google Scholar 

  38. Zurn, J. B., Jiang, X., &Motai, Y. (2005). Video-based rodent activity measurement using near-infrared illumination.Proceedings of the IEEE Instrumentation and Measurement Technology Conference,3, 1928–1931.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. W. Patullo.

Additional information

This research was supported by the Australian Research Council, with funding to D.L.M. We sincerely thank the staff, Julie Anne Quinne, Keith Buxton, Brett Purcell, and Michael Cowen, from the Integrative Neuroscience Facility at the Howard Florey Institute, for the use of, and their assistance with, the EthoVision software.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Patullo, B.W., Jolley-Rogers, G. & Macmillan, D.L. Video tracking in the extreme: Video analysis for nocturnal underwater animal movement. Behavior Research Methods 39, 783–788 (2007). https://doi.org/10.3758/BF03192969

Download citation

Keywords

  • Video Tracking
  • Nocturnal Activity
  • Freshwater Crayfish
  • Neuroscience Method
  • Videocassette Recorder