Behavior Research Methods

, Volume 39, Issue 4, pp 783–788 | Cite as

Video tracking in the extreme: Video analysis for nocturnal underwater animal movement

  • B. W. PatulloEmail author
  • G. Jolley-Rogers
  • D. L. Macmillan


Computer analysis of video footage is one option for recording locomotor behavior for a range of neurophysiological and behavioral studies. This technique is reasonably well established and accepted, but its use for some behavioral analyses remains a challenge. For example, filming through water can lead to reflection, and filming nocturnal activity can reduce resolution and clarity of filmed images. The aim of this study was to develop a noninvasive method for recording nocturnal activity in aquatic decapods and test the accuracy of analysis by video tracking software. We selected crayfish,Cherax destructor, because they are often active at night, they live underwater, and data on their locomotion is important for answering biological and physiological questions such as how they explore and navigate. We constructed recording arenas and filmed animals in infrared light. We then compared human observer data and software-acquired values. In this article, we outline important apparatus and software issues to obtain reliable computer tracking.


Video Tracking Nocturnal Activity Freshwater Crayfish Neuroscience Method Videocassette Recorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrahamsson, S. (1983). Trappability, locomotion, and diel pattern of activity of the crayfishAstacus astacus andPacifastacus leniusculus Dana.Freshwater Crayfish,5, 239–253.Google Scholar
  2. Arnott, S. A., Neil, D. M., &Ansell, A. D. (1998). Tail-flip mechanism and size-dependent kinematics of escape swimming in the brown shrimpCrangon crangon.Journal of Experimental Biology,201, 1771–1784.PubMedGoogle Scholar
  3. Barbaresi, S., &Gherardi, F. (2001). Daily activity of the whiteclawed crayfish,Austopotamobius pallipes (Lereboullet): A comparison between field and laboratory studies.Journal of Natural History,35, 1861–1871.CrossRefGoogle Scholar
  4. Basil, J., &Sandeman, D. (2000). Crayfish (Cherax destructor) use tactile cues to detect and learn topographical changes in their environment.Ethology,106, 247–259.CrossRefGoogle Scholar
  5. Becco, C., Vandewalle, N., Delcourt, J., &Poncin, P. (2006). Experimental evidences of a structural and dynamical transition in fish school.Physica A,367, 487–493.CrossRefGoogle Scholar
  6. Belmain, S. R., Simmonds, M. S. J., &Blaney, W. M. (2000). Behavioral responses of adult deathwatch beetles,Xestobium rufovillosum de Geer (Coleoptera: Anobiidae), to light and dark.Journal of Insect Behaviour,13, 15–26.CrossRefGoogle Scholar
  7. Božič, J., Skvarč, J., &Abramson, C. I. (2004). Video analysis in bee biology using Neuro Inspector.Apiacata,38, 366–374.Google Scholar
  8. Camhi, J. M., &Johnson, E. N. (1999). High frequency steering maneuvers mediated by tactile cues: Antennal wall following in the cockroach.Journal of Experimental Biology,202, 631–643.PubMedGoogle Scholar
  9. Copp, N. H., &Jamon, M. (2001). Kinematics of rotation in place during defense turning in the crayfish Procambarus clarkii. Journal of Experimental Biology,204, 471–486.PubMedGoogle Scholar
  10. Dobly, A. (2001). Movement patterns of male common voles (Microtus arvalis) in a network of Y junctions: Role of distant visual cues and scent marks.Canadian Journal of Zoology,79, 2228–2238.CrossRefGoogle Scholar
  11. Domenici, P., Jamon, M., &Clarac, F. (1998). Curve walking in freely moving crayfish (Procambarus clarkii).Journal of Experimental Biology,201, 1315–1329.PubMedGoogle Scholar
  12. Dussutour, A., Deneubourg, J., &Fourcassié, V. (2005). Amplification of individual preferences in a social context: The case of wallfollowing in ants.Proceedings of the Royal Society B,272, 705–714.CrossRefPubMedGoogle Scholar
  13. Finley, L., &Macmillan, D. L. (2002). An analysis of field potentials during different tailflip behaviours in crayfish.Marine & Freshwater Behaviour & Physiology,35, 221–233.CrossRefGoogle Scholar
  14. Hazlett, B., Rittschof, D., &Ameyawakumfi, C. (1979). Variation in the caudal color spot of the crayfishOrconectes virilis (Hagen) (decapoda, cambaridae).Crustaceana,36, 56–60.CrossRefGoogle Scholar
  15. Herberholz, J., Sen, M. M., &Edwards, D. H. (2004). Escape behavior and escape circuit activation in juvenile crayfish during preys—predator interactions.Journal of Experimental Biology,201, 1855–1863.CrossRefGoogle Scholar
  16. Horner, A. J., Weissburg, M. J., &Derby, C. D. (2004). Dual antennular chemosensory pathways can mediate orientation by Caribbean spiny lobsters in naturalistic flow conditions.Journal of Experimental Biology,207, 3785–3796.CrossRefPubMedGoogle Scholar
  17. Jadot, C., Donnay, A., Ylieff, M., &Poncin, P. (2005). Impact implantation of a transmitter onSarpa salpa behaviour: Study with a computerized video tracking system.Journal of Fish Biology,67, 589–595.CrossRefGoogle Scholar
  18. Keller, T. A., Powell, I., &Weissburg, M. J. (2003). Role of olfactory appendages in chemically mediated orientation of blue crabs.Marine Ecology Progress Series,261, 217–231.CrossRefGoogle Scholar
  19. Kruk, M. R. (1997). Measuring behaviour into the twenty-first century.Trends in Neurosciences,20, 187–189.CrossRefGoogle Scholar
  20. MacIver, M. A., &Nelson, M. E. (2000). Body modeling and modelbased tracking for neuroethology.Journal of Neuroscience Methods,95, 133–143.CrossRefPubMedGoogle Scholar
  21. McMahon, A., Patullo, B. W., &Macmillan, D. L. (2005). Exploration in a T-maze: The crayfishCherax destructor suggests bilateral comparison of antennal tactile information.Biological Bulletin,208, 183–188.CrossRefPubMedGoogle Scholar
  22. Merrick, J. R. (1993).Freshwater crayfish of New South Wales. Marrickville, New South Wales: Southwood Press.Google Scholar
  23. Noldus, L. P. J. J., Spink, A. J., &Tegelenbosch, R. A. J. (2001). EthoVision: A versatile video tracking system for automation of behavioural experiments.Behavior Research Methods, Instruments, & Computers,33, 398–414.CrossRefGoogle Scholar
  24. Noldus, L. P. J. J., Spink, A. J., &Tegelenbosch, R. A. J. (2002). Computerised video tracking, movement analysis and behaviour recognition in insects.Computers & Electronics in Agriculture,35, 201–227.CrossRefGoogle Scholar
  25. Page, T., &Larimer, J. L. (1972). Entrainment of the circadian locomotor activity rhythm in crayfish: The role of the eyes and caudal photoreceptor.Journal of Comparative Physiology,78, 107–120.CrossRefGoogle Scholar
  26. Panksepp, J. B., &Huber, R. (2004). Ethological analyses of crayfish behavior: A new invertebrate system for measuring the rewarding properties of psychostimulants.Behaviour & Brain Research,153, 171–180.CrossRefGoogle Scholar
  27. Patullo, B. W., &Macmillan, D. L. (2006). Corners and bubblewrap: The structure and texture of surfaces influence crayfish exploratory behaviour.Journal of Experimental Biology,209, 567–575.CrossRefPubMedGoogle Scholar
  28. Rasnow, B., Assad, C., Hartmann, M. J., &Bower, J. M. (1997). Applications of multimedia computers and video mixing to neuroethology.Journal of Neuroscience Methods,76, 83–91.CrossRefPubMedGoogle Scholar
  29. Reynolds, D. R., &Riley, J. R. (2002). Remote-sensing, telemetric and computer-based technologies for investigating insect movement: A survey of existing and potential techniques.Computers & Electronics in Agriculture,35, 271–307.CrossRefGoogle Scholar
  30. Sams-Dodd, F. (1995). Automation of the social interaction test by a video-tracking system: Behavioral effects of repeated phencyclidine treatment.Journal of Neuroscience Methods,59, 157–167.CrossRefPubMedGoogle Scholar
  31. Schmitz, B., &Herberholz, J. (1998). Snapping behaviour in intraspecific agonistic encounters in the snapping shrimp (Alpheus heterochaelis).Journal of Bioscience,23, 623–632.CrossRefGoogle Scholar
  32. Schüder, I., Port, G., &Bennison, J. (2004). The behavioural response of slugs and snails to novel molluscicides, irritants and repellents.Pest Management Science,60, 1171–1177.CrossRefPubMedGoogle Scholar
  33. Shuranova, Z., Burmistrov, Y., &Abramson, C. I. (2005). Habituation to a novel environment in the crayfishProcambarus cubensis.Journal of Crustacean Biology,25, 488–494.CrossRefGoogle Scholar
  34. Sussman, D. (1998). Behavioral measurement in perspective?Trends in Neurosciences,21, 20–21.PubMedGoogle Scholar
  35. Szentesi, Á., Weber, D. C., &Jermy, T. (2002). Role of visual stimuli in host and mate location of the Colorado potato beetle.Entomologia Experimentalis et Applicata,105, 141–152.CrossRefGoogle Scholar
  36. Valentinčič, T., Kralj, J., Stenovec, M., Koce, A., &Caprio, J. (2000). The behavioral detection of binary mixtures of amino acids and their individual components by catfish.Journal of Experimental Biology,203, 3307–3317.PubMedGoogle Scholar
  37. Wu, B. M., Chan, F. H. Y., Lam, F. K., Poon, P. W. F., &Poon, A. M. S. (2000). A novel system for simultaneous monitoring of locomotor and sound activities in animals.Journal of Neuroscience Methods,101, 69–73.CrossRefPubMedGoogle Scholar
  38. Zurn, J. B., Jiang, X., &Motai, Y. (2005). Video-based rodent activity measurement using near-infrared illumination.Proceedings of the IEEE Instrumentation and Measurement Technology Conference,3, 1928–1931.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2007

Authors and Affiliations

  • B. W. Patullo
    • 1
    Email author
  • G. Jolley-Rogers
    • 1
  • D. L. Macmillan
    • 1
  1. 1.Department of ZoologyUniversity of MelbourneParkvilleAustralia

Personalised recommendations