Animal Learning & Behavior

, Volume 29, Issue 4, pp 336–353 | Cite as

Music discriminations by carp (Cyprinus carpio)

  • Ava R. ChaseEmail author


Studies using three koi (Cyprinus carpio) investigated discrimination of musical stimuli. The common protocol used a single manipulandum and a multiple continuous reinforcement-extinction schedule signaled by music of the S+ and S− types in 30-sec presentations separated by a silent 15-sec intertrial interval. In a categorization study, the fish learned to discriminate blues recordings from classical, generalizing from John Lee Hooker (guitar and vocals) and Bach (oboe concertos) to multiple artists and ensembles. A control-by-reversal test developed into a demonstration of progressive improvement in iterated reversal learning. The subjects next learned to discriminate single-timbre synthesized versions of similar music. In the final study, which used melodies with the same order of note-duration values, but with mirror-image orders of pitch values, one fish discriminated melodies with no timbre cues, in contrast to results reported in rats.


Reversal Learning Compact Disc Musical Genre Probe Session Rote Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baron, M. R. (1965). The stimulus, stimulus control, and generalization. In D. I. Mostovsky (Ed.),Stimulus generalization (pp. 62–71). Stanford, CA: Stanford University Press.Google Scholar
  2. Chase, A. R., &Hill, W. (1999). Reliable operant apparatus for fish: Audio stimulus generator, response button, and pellet-dispensing nipple.Behavior Research Methods, Instruments, & Computers,31, 470–478.Google Scholar
  3. Coombs, S., Jannsen, J., &Montgomery, J. C. (1992). Functional and evolutionary implications of peripheral diversity in lateral line systems. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.),The evolutionary biology of hearing (pp. 267–294). New York: Springer-Verlag.Google Scholar
  4. D’Amato, M. R., &Salmon, D. P. (1982). Tune discrimination in monkeys (Cebus apella) and rats.Animal Learning & Behavior,10, 126–134.Google Scholar
  5. D’Amato, M. R., &Salmon, D. P. (1984). Processing of complex auditory stimuli (tunes) by rats and monkeys (Cebus apella).Animal Learning & Behavior,12, 184–194.Google Scholar
  6. Fay, R. R. (1988).Hearing in vertebrates: A psychophysics data-book. Winnetka, IL: Hill-Fay Associates.Google Scholar
  7. Fay, R. R. (1992). Analytic listening in goldfish.Hearing Research,59, 101–107.PubMedCrossRefGoogle Scholar
  8. Fay, R. R. (1994). Perception of temporal acoustic patterns by the goldfish (Carassius auratus).Hearing Research,76, 158–172.PubMedCrossRefGoogle Scholar
  9. Fay, R. R. (1995). Perception of spectrally and temporally complex sounds by the goldfish (Carassius auratus).Hearing Research,89, 146–154.PubMedCrossRefGoogle Scholar
  10. Fay, R. R. (1998). Auditory stream segregation in goldfish (Carassius auratus).Hearing Research,120, 69–76.PubMedCrossRefGoogle Scholar
  11. Fay, R. R., &Ream, T. J. (1986). Acoustic response and tuning in saccular nerve fibers of the goldfish (Carassius auratus).Journal of the Acoustical Society of America,79, 1883–1895.PubMedCrossRefGoogle Scholar
  12. Hartman, W. M. (1988). Pitch perception and the segregation and integration of auditory entities. In G. M. Edelman, W. E. Gall, & W. M. Cowan (Eds.),Auditory function: Neurological basis of hearing (pp. 623–645). New York: Wiley.Google Scholar
  13. Herrnstein, R. J. (1992). Levels of stimulus control: A functional approach. In C. R. Gallistel (Ed.),Animal cognition (pp. 133–166). Cambridge, MA: MIT Press.Google Scholar
  14. Herrnstein, R. J. (1994).Animals as classifiers. Lecture given at the Rowland Institute for Science, Cambridge, MA, 20 April 1994.Google Scholar
  15. Hulse, S. H., &Cynx, J. (1985). Relative pitch perception is constrained by absolute pitch in songbirds (Mimus, Molothrus, Sturnus).Journal of Comparative Psychology,99, 176–196.CrossRefGoogle Scholar
  16. Hulse, S. H., &Page, S. C. (1988). Toward a comparative psychology of music perception.Music Perception,5, 427–445.Google Scholar
  17. Hulse, S. H., Takeuchi, A. H., &Braaten, R. F. (1992). Perceptual invariances in the comparative psychology of music.Music Perception,10, 151–184.Google Scholar
  18. Jacobs, D. W., &Tavolga, W. N. (1968). Acoustic frequency discrimination in the goldfish.Animal Behavior,16, 67–71.CrossRefGoogle Scholar
  19. Malott, R. W., &Siddall, W. (1972). Acquisition of the people concept in pigeons.Psychological Reports,31, 3–13.Google Scholar
  20. Nelson, J. S. (1984).Fishes of the world (2nd ed.). New York: Wiley.Google Scholar
  21. Poli, M., &Previde, E. P. (1991). Discrimination of musical stimuli by rats (Rattus norvegicus).International Journal of Comparative Psychology,5, 7–18.Google Scholar
  22. Popper, A. N., &Fay, R. R. (1993). Sound detection and processing by fish: Critical review and major research questions.Brain, Behavior, & Evolution.41, 14–38.CrossRefGoogle Scholar
  23. Popper, A. N., Platt, C., &Saidel, W. (1982). Acoustic functions in the fish ear.Trends in Neurosciences,5, 276–280.CrossRefGoogle Scholar
  24. Porter, D., &Neuringer, A. (1984). Music discriminations by pigeons.Journal of Experimental Psychology: Animal Behavior Processes,10, 138–148.CrossRefGoogle Scholar
  25. Segal, M., &Harrison, J. M. (1978). The control of responding by auditory stimuli: Interactions between dimensions of stimuli.Journal of the Experimental Analysis of Behavior,30, 97–106.PubMedCrossRefGoogle Scholar
  26. Sturdy, C. B., Phillmore, L. S., Price, J. L., &Weisman, R. G. (1999). Song-note discriminations in zebra finches (Taeniopygia guttata): Categories and pseudocategories.Journal of Comparative Psychology,113, 204–212.CrossRefGoogle Scholar
  27. Vaughan, W., Jr., &Greene, S. L. (1984). Pigeon visual memory capacity.Journal of Experimental Psychology: Animal Behavior Processes,10, 256–271.CrossRefGoogle Scholar
  28. Watanabe, S., &Sato, K. (1999). Discriminative stimulus properties of music in Java sparrows.Behavioural Processes,47, 53–57.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2001

Authors and Affiliations

  1. 1.Rowland Institute for ScienceCambridge

Personalised recommendations