Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Behavior Research Methods
  3. Article

FACTOR: A computer program to fit the exploratory factor analysis model

  • Published: February 2006
  • Volume 38, pages 88–91, (2006)
  • Cite this article
Download PDF
Behavior Research Methods Aims and scope Submit manuscript
FACTOR: A computer program to fit the exploratory factor analysis model
Download PDF
  • Urbano Lorenzo-Seva1 &
  • Pere J. Ferrando1 
  • 9740 Accesses

  • 859 Citations

  • 5 Altmetric

  • Explore all metrics

Abstract

Exploratory factor analysis (EFA) is one of the most widely used statistical procedures in psychological research. It is a classic technique, but statistical research into EFA is still quite active, and various new developments and methods have been presented in recent years. The authors of the most popular statistical packages, however, do not seem very interested in incorporating these new advances. We present the program FACTOR, which was designed as a general, user-friendly program for computing EFA. It implements traditional procedures and indices and incorporates the benefits of some more recent developments. Two of the traditional procedures implemented are polychoric correlations and parallel analysis, the latter of which is considered to be one of the best methods for determining the number of factors or components to be retained. Good examples of the most recent developments implemented in our program are (1) minimum rank factor analysis, which is the only factor method that allows one to compute the proportion of variance explained by each factor, and (2) the simplimax rotation method, which has proved to be the most powerful rotation method available. Of these methods, only polychoric correlations are available in some commercial programs. A copy of the software, a demo, and a short manual can be obtained free of charge from the first author.

Article PDF

Download to read the full article text

Similar content being viewed by others

What is Qualitative in Qualitative Research

Article Open access 27 February 2019

Patrik Aspers & Ugo Corte

A new criterion for assessing discriminant validity in variance-based structural equation modeling

Article Open access 22 August 2014

Jörg Henseler, Christian M. Ringle & Marko Sarstedt

The Trustworthiness of Content Analysis

Chapter © 2020
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Anderson, R. D., &Rubin, H. (1956). Statistical inference in factor analysis. InProceedings of the 3rd Berkeley Symposium of Mathematical Statistics and Probability (Vol. 5, pp. 111–150). Berkeley: University of California Press.

    Google Scholar 

  • Bentler, P. M. (1977). Factor simplicity index and transformations.Psychometrika,42, 277–295.

    Article  Google Scholar 

  • Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis.Multivariate Behavioral Research,36, 111–150.

    Article  Google Scholar 

  • Browne, M. W., Cudeck, R., Tateneni, K., & Mels, G. (2004). CEFA: Comprehensive Exploratory Factor Analysis, Version 2.00 [Computer software and manual]. Available at http://quantrm2.psy .ohio-state.edu/browne/.

  • Clarke, M. R. B. (1970). A rapidly convergent method for maximumlikelihood factor analysis.British Journal of Mathematical & Statistical Psychology,23, 43–52.

    Google Scholar 

  • Clarkson, D. B., &Jennrich, R. I. (1988). Quartic rotation criteria and algorithms.Psychometrika,53, 251–259.

    Article  Google Scholar 

  • Cureton, E. E., &Mulaik, S. A. (1975). The weighted varimax rotation and the promax rotation.Psychometrika,40, 183–195.

    Article  Google Scholar 

  • Eysenck, S. B. G., Eysenck, H. J., &Barrett, P. T. (1985). A revised version of the Psychoticism scale.Personality & Individual Differences,6, 21–29.

    Article  Google Scholar 

  • Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., &Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research.Psychological Methods,4, 272–299.

    Article  Google Scholar 

  • Gorsuch, R. L. (1983).Factor analysis. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Hendrickson, A. E., &White, P. O. (1964). Promax: A quick method for rotation to oblique simple structure.British Journal of Statistical Psychology,17, 65–70.

    Google Scholar 

  • Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis.Psychometrika,30, 179–185.

    Article  PubMed  Google Scholar 

  • Jöreskog, K. G. (1977). Factor analysis by least-squares and maximumlikelihood methods. In K. Enslein, A. Ralston, & H. S. Wilf (Eds.),Statistical methods for digital computers (pp. 125–153). New York: Wiley.

    Google Scholar 

  • Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.Psychometrika,23, 187–200.

    Article  Google Scholar 

  • Kiers, H. A. L. (1994). Simplimax: An oblique rotation to an optimal target with simple structure.Psychometrika,59, 567–579.

    Article  Google Scholar 

  • Lorenzo-Seva, U. (1999). Promin: A method for oblique factor rotation.Multivariate Behavioral Research,34, 347–356.

    Article  Google Scholar 

  • Lorenzo-Seva, U. (2000). The weighted oblimin rotation.Psychometrika,65, 301–318.

    Article  Google Scholar 

  • Lorenzo-Seva, U. (2003). A factor simplicity index.Psychometrika,68, 49–60.

    Article  Google Scholar 

  • MacCallum, R. (1983). A comparison of factor analysis programs in SPSS, BMDP, and SAS.Psychometrika,48, 223–231.

    Article  Google Scholar 

  • McDonald, R. P. (1981). Constrained least squares estimators of oblique common factors.Psychometrika,46, 337–341.

    Article  Google Scholar 

  • McKeon, J. J. (1968).Rotation for maximum association between factors and tests. Unpublished manuscript, George Washington University.

  • Mislevy, R. J., &Bock, R. D. (1990).BILOG 3: Item analysis and test scoring with binary logistic models. Mooresville, IN: Scientific Software.

    Google Scholar 

  • Mulaik, S. A. (1972).The foundations of factor analysis. New York: McGraw-Hill.

    Google Scholar 

  • Shapiro, A., &ten Berge, J. M. F. (2002). Statistical inference of minimum rank factor analysis.Psychometrika,67, 79–94.

    Article  Google Scholar 

  • ten Berge, J. M. F., &Hofstee, W. K. B. (1999). Coefficients alpha and reliabilities of unrotated and rotated components.Psychometrika,64, 83–90.

    Article  Google Scholar 

  • ten Berge, J. M. F., &Kiers, H. A. L. (1991). A numerical approach to the exact and the approximate minimum rank of a covariance matrix.Psychometrika,56, 309–315.

    Article  Google Scholar 

  • ten Berge, J. M. F., Krijnen, W., Wansbeek, T., &Shapiro, A. (1999). Some new results on correlation-preserving factor scores prediction methods.Linear Algebra & Its Applications,289, 311–318.

    Article  Google Scholar 

  • ten Berge, J. M. F., &Nevels, K. (1977). A general solution to Mosier’s oblique Procrustes problem.Psychometrika,42, 593–600.

    Article  Google Scholar 

  • Tucker, L. R. (1951).A method for synthesis of factor analysis studies (Personnel Research Section Report No. 984). Washington, DC: U.S. Department of the Army.

    Google Scholar 

  • Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations.Psychometrika,41, 321–327.

    Article  Google Scholar 

  • Yates, A. (1987).Multivariate exploratory data analysis: A perspective on exploratory factor analysis. Albany: State University of New York Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departament de Psicología, Universitat Rovira i Virgili, Ctra. De Valls, s/n, 43007, Tarragona, Spain

    Urbano Lorenzo-Seva & Pere J. Ferrando

Authors
  1. Urbano Lorenzo-Seva
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Pere J. Ferrando
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Urbano Lorenzo-Seva.

Additional information

This research was supported by Grant SEC2001-3821-C05-C02 from the Spanish Ministry of Science and Technology with the collaboration of the European Fund for the Development of Regions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenzo-Seva, U., Ferrando, P.J. FACTOR: A computer program to fit the exploratory factor analysis model. Behavior Research Methods 38, 88–91 (2006). https://doi.org/10.3758/BF03192753

Download citation

  • Received: 02 February 2004

  • Accepted: 28 March 2005

  • Issue Date: February 2006

  • DOI: https://doi.org/10.3758/BF03192753

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Exploratory Factor Analysis
  • Polychoric Correlation
  • Traditional Procedure
  • Program Factor
  • Multivariate Behavioral Research
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature