Attention, Perception, & Psychophysics

, Volume 72, Issue 4, pp 1120–1129 | Cite as

Video game players show more precise multisensory temporal processing abilities

  • Sarah E. DonohueEmail author
  • Marty G. Woldorff
  • Stephen R. Mitroff
Research Articles


Recent research has demonstrated enhanced visual attention and visual perception in individuals with extensive experience playing action video games. These benefits manifest in several realms, but much remains unknown about the ways in which video game experience alters perception and cognition. In the present study, we examined whether video game players’ benefits generalize beyond vision to multisensory processing by presenting auditory and visual stimuli within a short temporal window to video game players and non-video game players. Participants performed two discrimination tasks, both of which revealed benefits for video game players: In a simultaneity judgment task, video game players were better able to distinguish whether simple visual and auditory stimuli occurred at the same moment or slightly offset in time, and in a temporal-order judgment task, they revealed an enhanced ability to determine the temporal sequence of multisensory stimuli. These results suggest that people with extensive experience playing video games display benefits that extend beyond the visual modality to also impact multisensory processing.


Video Game Auditory Stimulus Judgment Task Multisensory Integration Video Game Player 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129, 387–398.PubMedGoogle Scholar
  2. Carriere, B. N., Royal, D. W., Perrault, T. J., Morrison, S. P., Vaughan, J. W., Stein, B. E., & Wallace, M. T. (2007). Visual deprivation alters the development of cortical multisensory integration. Journal of Neurophysiology, 98, 2858–2867. doi:10.1152/jn.00587.2007PubMedCrossRefGoogle Scholar
  3. Castel, A. D., Pratt, J., & Drummond, E. (2005). The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta Psychologica, 119, 217–230. doi:10.1016/j.actpsy.2005.02.004PubMedCrossRefGoogle Scholar
  4. Coren, S., Ward, L. M., & Enns, J. T. (2004). Sensation and perception (6th ed.). Hoboken, NJ: Wiley.Google Scholar
  5. De Lisi, R., & Cammarano, D. M. (1996). Computer experience and gender differences in undergraduate mental rotation performance. Computers in Human Behavior, 12, 351–361.CrossRefGoogle Scholar
  6. De Lisi, R., & Wolford, J. L. (2002). Improving children’s mental rotation accuracy with computer game playing. Journal of Genetic Psychology, 163, 272–282.PubMedCrossRefGoogle Scholar
  7. Dorval, M., & Pépin, M. (1986). Effect of playing a video game on a measure of spatial visualization. Perceptual & Motor Skills, 62, 159–162.Google Scholar
  8. Driver, J., & Noesselt, T. (2008). Multisensory interplay reveals crossmodal influences on “sensory-specific” brain regions, neural responses, and judgments. Neuron, 57, 11–23.PubMedCrossRefGoogle Scholar
  9. Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18, 850–855. doi:10.1111/j.1467-9280.2007.01990.xPubMedCrossRefGoogle Scholar
  10. Fleck, M., & Mitroff, S. R. (2008). Videogamers excel at finding rare targets [Abstract]. Journal of Vision, 8(6), 313a. doi:10.1167/8.6.313.CrossRefGoogle Scholar
  11. Gagnon, D. (1985). Videogames and spatial skills: An exploratory study. Educational Communication & Technology Journal, 33, 263–275.Google Scholar
  12. Ghoshal, A., Pouget, P., Popescu, M., & Ebner, F. (2009). Early bilateral sensory deprivation blocks the development of coincident discharge in rat barrel cortex. Journal of Neuroscience, 29, 2384–2392. doi:10.1523/JNEUROSCI.4427-08.2009PubMedCrossRefGoogle Scholar
  13. Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534–537. doi:10.1038/ nature01647PubMedCrossRefGoogle Scholar
  14. Green, C. S., & Bavelier, D. (2006a). Effect of action video games on the spatial distribution of visuospatial attention. Journal of Experimental Psychology: Human Perception & Performance, 32, 1465–1478. doi:10.1037/0096-1523.32.6.1465CrossRefGoogle Scholar
  15. Green, C. S., & Bavelier, D. (2006b). Enumeration versus multiple object tracking: The case of action video game players. Cognition, 101, 217–245. doi:10.1016/j.cognition.2005.10.004PubMedCrossRefGoogle Scholar
  16. Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychological Science, 18, 88–94. doi:10.1111/j.1467-9280.2007.01853.xPubMedCrossRefGoogle Scholar
  17. Greenfield, P. M., DeWinstanley, P., Kilpatrick, H., & Kaye, D. (1994). Action video games and informal education: Effects on strategies for dividing visual attention. Journal of Applied Developmental Psychology, 15, 105–123. doi:10.1016/0193-3973(94)90008-6CrossRefGoogle Scholar
  18. Griffith, J. L., Voloschin, P., Gibb, G. D., & Bailey, J. R. (1983). Differences in eye-hand motor coordination of video-game users and nonusers. Perceptual & Motor Skills, 57, 155–158.Google Scholar
  19. Harrar, V., & Harris, L. R. (2008). The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneity. Experimental Brain Research, 186, 517–524. doi:10.1007/s00221-007-1253-0CrossRefGoogle Scholar
  20. Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12, 549–551.PubMedCrossRefGoogle Scholar
  21. Liotti, M., Ryder, K., & Woldorff, M. G. (1998). Auditory attention in the congenitally blind: Where, when and what gets reorganized? NeuroReport, 9, 1007–1012. doi:10.1097/00001756-199804200-00010PubMedCrossRefGoogle Scholar
  22. McClurg, P. A., & Chaille, C. (1987). Computer games: Environments for developing spatial cognition? Journal of Educational Computing Research, 3, 95–111.Google Scholar
  23. Meredith, M. A., Nemitz, J. W., & Stein, B. E. (1987). Determinants of multisensory integration in superior colliculus neurons: I. Temporal factors. Journal of Neuroscience, 7, 3215–3229.PubMedGoogle Scholar
  24. Okagaki, L., & Frensch, P. A. (1994). Effects of video game playing on measures of spatial performance: Gender effects in late adolescence. Journal of Applied Developmental Psychology, 15, 33–58.CrossRefGoogle Scholar
  25. Poliakoff, E., Shore, D. I., Lowe, C., & Spence, C. (2006). Visuotactile temporal order judgments in ageing. Neuroscience Letters, 396, 207–211.PubMedCrossRefGoogle Scholar
  26. Putzar, L., Goerendt, I., Lange, K., Rösler, F., & Röder, B. (2007). Early visual deprivation impairs multisensory interactions in humans. Nature Neuroscience, 10, 1243–1245. doi:10.1038/nn1978PubMedCrossRefGoogle Scholar
  27. Quaiser-Pohl, C., Geiser, C., & Lehmann, W. (2006). The relationship between computer-game preference, gender, and mental-rotation ability. Personality & Individual Differences, 40, 609–619. doi:10.1016/j.paid.2005.07.015CrossRefGoogle Scholar
  28. Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13, 87–103.PubMedGoogle Scholar
  29. Rosenberg, B. H., Landsittel, D., & Averch, T. D. (2005). Can video games be used to predict or improve laparoscopic skills? Journal of Endourology, 19, 372–376.PubMedCrossRefGoogle Scholar
  30. Schneider, K. A., & Bavelier, D. (2003). Components of visual prior entry. Cognitive Psychology, 47, 333–366. doi:10.1016/S0010-0285(03)00035-5PubMedCrossRefGoogle Scholar
  31. Sims, V. K., & Mayer, R. E. (2002). Domain specificity of spatial expertise: The case of video game players. Applied Cognitive Psychology, 16, 97–115. doi:10.1002/acp.759CrossRefGoogle Scholar
  32. Spence, C., Shore, D. I., & Klein, R. M. (2001). Multisensory prior entry. Journal of Experimental Psychology: General, 130, 799–832. doi:10.1037/0096-3445.130.4.799CrossRefGoogle Scholar
  33. Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, MA: MIT Press.Google Scholar
  34. Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: Current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9, 255–266.PubMedCrossRefGoogle Scholar
  35. Stone, J. V., Hunkin, N. M., Porrill, J., Wood, R., Keeler, V., Beanland, M., et al. (2001). When is now? Perception of simultaneity. Proceedings of the Royal Society B, 268, 31–38.PubMedCrossRefGoogle Scholar
  36. van Eijk, R. L. J., Kohlrausch, A., Juola, J. F., & van de Par, S. (2008). Audiovisual synchrony and temporal order judgments: Effects of experimental method and stimulus type. Perception & Psychophysics, 70, 955–968. doi:10.1037/0096-3445.130.4.799CrossRefGoogle Scholar
  37. van Wassenhove, V., Grant, K. W., & Poeppel, D. (2007). Temporal window of integration in auditory-visual speech perception. Neuropsychologia, 45, 598–607. doi:10.1016/j.neuropsychologia.2006.01.001PubMedCrossRefGoogle Scholar
  38. Vatakis, A., Bayliss, L., Zampini, M., & Spence, C. (2007). The influence of synchronous audiovisual distractors on audiovisual temporal order judgments. Perception & Psychophysics, 69, 298–309.CrossRefGoogle Scholar
  39. Vatakis, A., Navarra, J., Soto-Faraco, S., & Spence, C. (2007). Temporal recalibration during asynchronous audiovisual speech perception. Experimental Brain Research, 181, 173–181.CrossRefGoogle Scholar
  40. Vatakis, A., & Spence, C. (2006). Temporal order judgments for audiovisual targets embedded in unimodal and bimodal distractor streams. Neuroscience Letters, 408, 5–9.PubMedCrossRefGoogle Scholar
  41. Vroomen, J., Keetels, M., de Gelder, B., & Bertelson, P. (2004). Recalibration of temporal order perception by exposure to audio-visual asynchrony. Cognitive Brain Research, 22, 32–35. doi:10.1016/j.cogbrainres.2004.07.003PubMedCrossRefGoogle Scholar
  42. West, G. L., Stevens, S. S., Pun, C., & Pratt, J. (2008). Visuospatial experience modulates attentional capture: Evidence from action video game players. Journal of Vision, 8(16, Art. 13), 1–9.PubMedCrossRefGoogle Scholar
  43. Zampini, M., Brown, T., Shore, D. I., Maravita, A., Röder, B., & Spence, C. (2005). Audiotactile temporal order judgments. Acta Psychologica, 118, 277–291. doi:10.1016/j.actpsy.2004.10.017PubMedCrossRefGoogle Scholar
  44. Zampini, M., Guest, S., Shore, D. I., & Spence, C. (2005). Audio-visual simultaneity judgments. Perception & Psychophysics, 67, 531–544.CrossRefGoogle Scholar
  45. Zampini, M., Shore, D. I., & Spence, C. (2003). Audiovisual temporal order judgments. Experimental Brain Research, 152, 198–210.CrossRefGoogle Scholar
  46. Zampini, M., Shore, D. I., & Spence, C. (2005). Audiovisual prior entry. Neuroscience Letters, 381, 217–222.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  • Sarah E. Donohue
    • 1
    Email author
  • Marty G. Woldorff
    • 1
  • Stephen R. Mitroff
    • 1
  1. 1.Center for Cognitive NeuroscienceDuke UniversityDurham

Personalised recommendations