Attention, Perception, & Psychophysics

, Volume 72, Issue 3, pp 736–746 | Cite as

Eye-movement-driven changes in the perception of auditory space

Research Articles


The perceptual localization of sensory stimuli often depends on body position, and, when action is required, sensory coordinates must be transformed into a motor reference frame. We investigated the role of such a reference frame change on visual and auditory spatial cognition. Participants had to make a saccade to a visual or auditory target and subsequently compare the location of a visual or auditory probe to the remembered location of the target. Neither visual nor auditory localization depended on trial-by-trial variability in saccade endpoint, suggesting that target locations are remapped across saccades in a manner allowing for oculomotor noise. We also compared visual and auditory localization performance before and after the systematic modification of saccade metrics by saccadic adaptation. Adaptation introduced systematic biases into transsaccadic visual and auditory localization behavior. These results show that information about eye movements is taken into account in both visual and auditory spatial cognition. We propose that auditory stimuli are remapped across saccades and that this eye-centered representation contributes to normal auditory localization.


Localization Task Saccade Amplitude Saccade Target Auditory Target Auditory Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abel, L. A., Schmidt, D., Dell’Osso, L. F., & Daroff, R. B. (1978). Saccadic system plasticity in humans. Annals of Neurology, 4, 313–318.PubMedCrossRefGoogle Scholar
  2. Awater, H., Burr, D., Lappe, M., Morrone, M. C., & Goldberg, M. E. (2005). Effect of saccadic adaptation on localization of visual targets. Journal of Neurophysiology, 93, 3605–3614. doi:10.1152/ jn.01013.2004PubMedGoogle Scholar
  3. Bahcall, D., & Kowler, E. (1999). Illusory shifts in visual direction accompany adaptation of saccadic eye movements. Nature, 26, 864–866.Google Scholar
  4. Blauert, J. (1997). Spatial hearing: The psychophysics of human sound localization. Cambridge, MA: MIT Press.Google Scholar
  5. Bridgeman, B., Hendry, D., & Stark, L. (1975). Failure to detect displacement of the visual world during saccadic eye movements. Vision Research, 15, 719–722.PubMedCrossRefGoogle Scholar
  6. Bruno, A., & Morrone, M. C. (2007). Influence of saccadic adaptation on spatial localization: Comparison of verbal and pointing reports. Journal of Vision, 7(5, Art. 16), 1–13. doi:10.1167/7.5.16PubMedCrossRefGoogle Scholar
  7. Burr, D., Morrone, M. C., & Ross, J. (2001). Separate visual representations for perception and action revealed by saccadic eye movements. Current Biology, 11, 798–802.PubMedCrossRefGoogle Scholar
  8. Collins, T., Doré-Mazars, K., & Lappe, M. (2007). Motor space structures perceptual space: Evidence from human saccadic adaptation. Brain Research, 1172, 32–39.PubMedCrossRefGoogle Scholar
  9. Collins, T., Rolfs, M., Deubel, H., & Cavanagh, P. (2009). Postsaccadic location judgments reveal remapping of saccade targets to non-foveal locations. Journal of Vision, 9(5, Art. 29), 1–9.PubMedCrossRefGoogle Scholar
  10. Deubel, H. (2004). Localization of targets across saccades: Role of landmark objects. Visual Cognition, 11, 173–202.CrossRefGoogle Scholar
  11. Deubel, H., Bridgeman, B., & Schneider, W. X. (1998). Immediate postsaccadic information mediates space constancy. Vision Research, 38, 3147–3159.PubMedCrossRefGoogle Scholar
  12. Doré-Mazars, K., Vergilino-Perez, D., Collins, T., Bohacova, K., & Beauvillain, C. (2006). The use of recurrent signals about adaptation for subsequent saccade programming depends on object structure. Brain Research, 1113, 153–162.PubMedCrossRefGoogle Scholar
  13. Frens, M. A., & Van Opstal, A. J. (1994). Transfer of short-term adaptation in saccadic eye movements. Experimental Brain Research, 100, 293–306.CrossRefGoogle Scholar
  14. Frens, M. A., & Van Opstal, A. J. (1995). A quantitative study of auditory-evoked saccadic eye movements in two dimensions. Experimental Brain Research, 107, 103–117.CrossRefGoogle Scholar
  15. Gaymard, B., Rivaud-Péchoux, S., Yelnik, J., Pidoux, B., & Ploner, C. J. (2001). Involvement of the cerebellar thalamus in human saccade adaptation. European Journal of Neuroscience, 14, 554–560.PubMedCrossRefGoogle Scholar
  16. Goossens, H. H., & Van Opstal, A. J. (1999). Influence of head position on the spatial representation of acoustic targets. Journal of Neuroscience, 81, 2720–2736.Google Scholar
  17. Groh, J. M., Trause, A. S., Underhill, A. M., Clark, K. R., & Inati, S. (2001). Eye position influences auditory responses in primate inferior colliculus. Neuron, 29, 509–518.PubMedCrossRefGoogle Scholar
  18. Hofman, P. M., & Van Opstal, A. J. (1998). Spectro-temporal factors in two-dimensional human sound localization. Journal of the Acoustical Society of America, 103, 2634–2648.PubMedCrossRefGoogle Scholar
  19. Hopp, J. J., & Fuchs, A. F. (2002). Investigating the site of human saccadic gain adaptation with targeting and express saccades. Experimental Brain Research, 144, 538–548.CrossRefGoogle Scholar
  20. Hopp, J. J., & Fuchs, A. F. (2004). The characteristics and neuronal substrate of saccadic eye movement plasticity. Progress in Neurobiology, 72, 27–53. doi:10.1016/j.pneurobio.2003.12.002PubMedCrossRefGoogle Scholar
  21. Jay, M. F., & Sparks, D. L. (1984). Auditory receptive fields in primate superior colliculus shift with changes in eye position. Nature, 309, 345–347.PubMedCrossRefGoogle Scholar
  22. Jay, M. F., & Sparks, D. L. (1987a). Sensorimotor integration in the primate superior colliculus. I. Motor convergence. Journal of Neurophysiology, 57, 22–34.PubMedGoogle Scholar
  23. Jay, M. F., & Sparks, D. L. (1987b). Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. Journal of Neurophysiology, 57, 35–55.PubMedGoogle Scholar
  24. Kommerell, G., Olivier, D., & Theopold, H. (1976). Adaptive programming of phasic and tonic components in saccadic eye movements: Investigations in patients with abducens palsy. Investigative Ophthalmology, 15, 657–660.PubMedGoogle Scholar
  25. Kopinska, A., & Harris, L. R. (2003). Spatial representation in body coordinates: Evidence from errors in remembering positions of visual and auditory targets after active eye, head, and body movements. Canadian Journal of Experimental Psychology, 57, 23–37.PubMedGoogle Scholar
  26. Lackner, J. R. (1973). The role of posture in sound localization. Quarterly Journal of Experimental Psychology, 26, 235–251.Google Scholar
  27. Lewald, J. (1997). Eye-position effects in directional hearing. Behavioural Brain Research, 87, 35–48.PubMedCrossRefGoogle Scholar
  28. Lewald, J. (1998). The effect of gaze eccentricity on perceived sound direction and its relation to visual localization. Hearing Research, 115, 206–216.PubMedCrossRefGoogle Scholar
  29. Lewald, J. (2002). Rapid adaptation to auditory—visual spatial disparity. Learning & Memory, 9, 268–278.CrossRefGoogle Scholar
  30. Lewald, J., & Ehrenstein, W. H. (1996a). Auditory—visual shift in localization depending on gaze direction. NeuroReport, 7, 1929–1932.PubMedCrossRefGoogle Scholar
  31. Lewald, J., & Ehrenstein, W. H. (1996b). The effect of eye position on auditory lateralization. Experimental Brain Research, 108, 473–485.CrossRefGoogle Scholar
  32. Lewald, J., & Ehrenstein, W. H. (2000). Visual and proprioceptive shifts in perceived egocentric direction induced by eye-position. Vision Research, 4, 539–547.CrossRefGoogle Scholar
  33. MacAskill, M. R., Anderson, T. J., & Jones, R. D. (2002). Adaptive modification of saccade amplitude in Parkinson’s disease. Brain, 125, 1570–1582.PubMedCrossRefGoogle Scholar
  34. McLaughlin, S. (1967). Parametric adjustment in saccadic eye movements. Perception & Psychophysics, 2, 359–362.CrossRefGoogle Scholar
  35. Melcher, D., & Colby, C. L. (2008). Trans-saccadic perception. Trends in Cognitive Sciences, 12, 466–473.PubMedCrossRefGoogle Scholar
  36. Middlebrooks, J. C. (1992). Narrow-band sound localization related to external ear acoustics. Journal of the Acoustical Society of America, 92, 2607–2624.PubMedCrossRefGoogle Scholar
  37. Mullette-Gillman, O. A., Cohen, Y. E., & Groh, J. M. (2005). Eyecentered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus. Journal of Neurophysiology, 94, 2331–2352.PubMedCrossRefGoogle Scholar
  38. Mullette-Gillman, O. A., Cohen, Y. E., & Groh, J. M. (2009). Motor-related signals in the intraparietal cortex encode locations in a hybrid, rather than eye-centered reference frame. Cerebral Cortex, 19, 1761–1775.PubMedCrossRefGoogle Scholar
  39. Oldfield, S. R., & Parker, S. P. (1984). Acuity of sound localisation: A topography of auditory space. II. Pinna cues absent. Perception, 13, 601–617.PubMedCrossRefGoogle Scholar
  40. Optican, L., & Robinson, D. (1980). Cerebellar-dependent adaptive control of primate saccadic system. Journal of Neurophysiology, 44, 1058–1076.PubMedGoogle Scholar
  41. Pavani, F., Husain, M., & Driver, J. (2008). Eye-movements intervening between two successive sounds disrupt comparisons of auditory location. Experimental Brain Research, 189, 435–449.CrossRefGoogle Scholar
  42. Pavani, F., Husain, M., Làdavas, E., & Driver, J. (2004). Auditory deficits in visuospatial neglect patients. Cortex, 40, 347–365.PubMedCrossRefGoogle Scholar
  43. Recanzone, G. H. (1998). Rapidly induced auditory plasticity: The ventriloquism aftereffect. Proceedings of the National Academy of Sciences, 95, 869–875.CrossRefGoogle Scholar
  44. Ross, J., Morrone, M. C., & Burr, D. (1997). Compression of visual space before saccades. Nature, 386, 598–601.PubMedCrossRefGoogle Scholar
  45. Ross, J., Morrone, M. C., Goldberg, M., & Burr, D. (2001). Changes in visual perception at the time of saccades. Trends in Neurosciences, 24, 113–121.PubMedCrossRefGoogle Scholar
  46. Russo, G. S., & Bruce, C. J. (1994). Frontal eye field activity preceding aurally guided saccades. Journal of Neurophysiology, 71, 1250–1253.PubMedGoogle Scholar
  47. Sommer, M. A., & Wurtz, R. H. (2008). Brain circuits for the internal monitoring of movements. Annual Review of Neuroscience, 31, 317–338.PubMedCrossRefGoogle Scholar
  48. Stricanne, B., Andersen, R. A., & Mazzoni, P. (1996). Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. Journal of Neurophysiology, 76, 2071–2076.PubMedGoogle Scholar
  49. Takeichi, N., Kaneko, C. R. S., & Fuchs, A. F. (2007). Activity changes in monkey superior colliculus during saccade adaptation. Journal of Neurophysiology, 97, 4096–4107.PubMedCrossRefGoogle Scholar
  50. Vliegen, J., Van Grootel, T. J., & Van Opstal, A. J. (2004). Dynamic sound localization during rapid eye—head gaze shifts. Journal of Neuro science, 24, 9291–9302.Google Scholar
  51. Weerts, T. C., & Thirlow, W. R. (1971). The effects of eye position and expectation on sound localization. Perception & Psychophysics, 9, 35–39.CrossRefGoogle Scholar
  52. Werner-Reiss, U., Kelly, K. A., Trause, A. S., Underhill, A. M., & Groh, J. M. (2003). Eye position affects activity in primary auditory cortex of primates. Current Biology, 13, 554–562.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  • Thérèse Collins
    • 1
    • 2
  • Tobias Heed
    • 1
  • Brigitte Röder
    • 1
  1. 1.University of HamburgHamburgGermany
  2. 2.Psychology of Perception LaboratoryParis Descartes University and CNRSParisFrance

Personalised recommendations