Attention, Perception, & Psychophysics

, Volume 72, Issue 3, pp 706–720 | Cite as

Examination of gaze behaviors under in situ and video simulation task constraints reveals differences in information pickup for perception and action

Research Articles


Queensland University of Technology, Brisbane, Queensland, Australia Gaze and movement behaviors of association football goalkeepers were compared under two video simulation conditions (i.e., verbal and joystick movement responses) and three in situ conditions (i.e., verbal, simplified body movement, and interceptive response). The results showed that the goalkeepers spent more time fixating on information from the penalty kick taker’s movements than ball location for all perceptual judgment conditions involving limited movement (i.e., verbal responses, joystick movement, and simplified body movement). In contrast, an equivalent amount of time was spent fixating on the penalty taker’s relative motions and the ball location for the in situ interception condition, which required the goalkeepers to attempt to make penalty saves. The data suggest that gaze and movement behaviors function differently, depending on the experimental task constraints selected for empirical investigations. These findings highlight the need for research on perceptual— motor behaviors to be conducted in representative experimental conditions to allow appropriate generalization of conclusions to performance environments.


Perceptual Judgment Film Clip Task Constraint Ball Contact Ecological Psychology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abernethy, B. (1990). Expertise, visual search, and information pickup in squash. Perception, 19, 63–77.PubMedCrossRefGoogle Scholar
  2. Araújo, D., Davids, K., & Passos, P. (2007). Ecological validity, representative design, and correspondence between experimental task constraints and behavioral setting: Comment on Rogers, Kadar, and Costall (2005). Ecological Psychology, 19, 69–78.Google Scholar
  3. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixedeffects modeling with crossed random effects for subjects and items. Journal of Memory & Language, 59, 390–412. doi:10.1016/j.jml.2007.12.005CrossRefGoogle Scholar
  4. Bagiella, E., Sloan, R. P., & Heitjan, D. F. (2000). Mixed-effects models in psychophysiology. Psychophysiology, 37, 13–20.PubMedCrossRefGoogle Scholar
  5. Bradford, D., & Goodman-Delahunty, J. (2008). Detecting deception in police investigations: Implications for false confessions. Psychiatry, Psychology & Law, 15, 105–118. doi:10.1080/13218710701873932CrossRefGoogle Scholar
  6. Brunswik, E. (1955). Representative design and probabilistic theory in a functional psychology. Psychological Review, 62, 193–217.PubMedCrossRefGoogle Scholar
  7. Brunswik, E. (1956). Perception and the representative design of psychological experiments (2nd ed.). Berkeley: University of California Press.Google Scholar
  8. Burton, P., Gurrin, L., & Sly, P. (1998). Extending the simple linear regression model to account for correlated responses: An introduction to generalized estimating equations and multi-level mixed modeling. Statistics in Medicine, 17, 1261–1291.PubMedCrossRefGoogle Scholar
  9. Cañal-Bruland, R., & Schmidt, M. (2009). Response bias in judging deceptive movements. Acta Psychologica, 130, 235–240. doi:10.1016/ j.actpsy.2008.12.009PubMedCrossRefGoogle Scholar
  10. Craig, C. M., Goulon, C., Berton, E., Rao, G., Fernandez, L., & Bootsma, R. J. (2009). Optic variables used to judge future ball arrival position in expert and novice soccer players. Attention, Perception & Psychophysics, 71, 515–522. doi:10.3758/APP.71.3.515CrossRefGoogle Scholar
  11. Davids, K., Button, C., Araújo, D., Renshaw, I., & Hristovski, R. (2006). Movement models from sports provide representative task constraints for studying adaptive behavior in human movement systems. Adaptive Behavior, 14, 73–95.CrossRefGoogle Scholar
  12. Dewar, M. T., & Carey, D. P. (2006). Visuomotor immunity to perceptual illusion: A mismatch of attentional demands cannot explain the perception-action dissociation. Neuropsychologia, 44, 1501–1508. doi:10.1016/j.neuropsychologia.2005.11.010PubMedCrossRefGoogle Scholar
  13. Dhami, M. K., Hertwig, R., & Hoffrage, U. (2004). The role of repre sentative design in an ecological approach to cognition. Psychological Bulletin, 130, 959–988. doi:10.1037/0033-2909.130.6.959PubMedCrossRefGoogle Scholar
  14. Dijkerman, H. C., McIntosh, R. D., Schindler, I., Nijboer, T. C. W., & Milner, A. D. (2009). Choosing between alternative wrist postures: Action planning needs perception. Neuropsychologia, 47, 1476–1482. doi:10.1016/j.neuropsychologia.2008.12.002PubMedCrossRefGoogle Scholar
  15. Dixon, P. (2008). Models of accuracy in repeated-measures designs. Journal of Memory & Language, 59, 447–456. doi:10.1016/j.jml.2007.11.004CrossRefGoogle Scholar
  16. Dunwoody, P. T. (2006). The neglect of the environment by cognitive psychology. Journal of Theoretical & Philosophical Psychology, 26, 139–153.CrossRefGoogle Scholar
  17. Farrow, D., & Abernethy, B. (2003). Do expertise and the degree of perception—action coupling affect natural anticipatory performance? Perception, 32, 1127–1139. doi:10.1068/p3323PubMedCrossRefGoogle Scholar
  18. Fasolo, B., Hertwig, R., Huber, M., & Ludwig, M. (2009). Size, entropy, and density: What is the difference between small and large real-world assortments? Psychology & Marketing, 26, 254–279. doi:10.1002/mar.20272CrossRefGoogle Scholar
  19. Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage.Google Scholar
  20. Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.Google Scholar
  21. Hammond, K. R., & Stewart, T. R. (2001). The essential Brunswik: Beginnings, explications, applications. Oxford: Oxford University Press.Google Scholar
  22. Hogarth, R. M., & Kareláia, N. (2007). Heuristic and linear models of judgment: Matching rules and environments. Psychological Review, 114, 733–758. doi:10.1037/0033-295X.114.3.733PubMedCrossRefGoogle Scholar
  23. Huys, R., Smeeton, N. J., Hodges, N. J., Beek, P. J., & Williams, A. M. (2008). On the dynamic information underlying visual anticipation skill. Perception & Psychophysics, 70, 1217–1234. doi:10.3758/ PP.70.7.1217CrossRefGoogle Scholar
  24. Jackson, R. C., Warren, S., & Abernethy, B. (2006). Anticipation skill and susceptibility to deceptive movement. Acta Psychologica, 123, 355–371. doi:10.1016/j.actpsy.2006.02.002PubMedCrossRefGoogle Scholar
  25. Kareláia, N., & Hogarth, R. M. (2008). Determinants of linear judgment: A meta-analysis of lens model studies. Psychological Bulletin, 134, 404–426. doi:10.1037/0033-2909.134.3.404PubMedCrossRefGoogle Scholar
  26. Kellis, E., & Katis, A. (2007). Biomechanical characteristics and determinants of instep soccer kick. Journal of Sports Science & Medicine, 6, 154–165.Google Scholar
  27. Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial cognition: An interdisciplinary approach to representation and processing of spatial knowledge (pp. 1–17). Berlin: Springer.Google Scholar
  28. Kliegl, R., Risse, S., & Laubrock, J. (2007). Preview benefit and parafoveal-on-foveal effects from word n+2. Journal of Experimental Psychology: Human Perception & Performance, 33, 1250–1255. doi:10.1037/0096-1523.33.5.1250CrossRefGoogle Scholar
  29. Liu, Y.-T., Mayer-Kress, G., & Newell, K. M. (2006). Qualitative and quantitative change in the dynamics of motor learning. Journal of Experimental Psychology: Human Perception & Performance, 32, 380–393. doi:10.1037/0096-1523.32.2.380CrossRefGoogle Scholar
  30. Mann, D. T. Y., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual cognitive expertise in sport: A meta-analysis. Journal of Sport & Exercise Psychology, 29, 457–478.Google Scholar
  31. McPherson, S. L., & Vickers, J. N. (2004). Cognitive control in motor expertise. International Journal of Sport & Exercise Psychology, 2, 274–300.Google Scholar
  32. Michaels, C. F. (2000). Information, perception, and action: What should ecological psychologists learn from Milner and Goodale (1995)? Ecological Psychology, 12, 241–258.CrossRefGoogle Scholar
  33. Michaels, C. F., & Carello, C. (1981). Direct perception. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  34. Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford University Press.Google Scholar
  35. Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46, 774–785. doi:10.1016/j.neuropsychologia.2007.10.005PubMedCrossRefGoogle Scholar
  36. Morya, E., Bigatão, H., Lees, A., & Ranvaud, R. (2005). Evolving penalty kick strategies: World Cup and club matches 2000–2002. In T. Reilly, J. Cabri, & D. Araújo (Eds.), Science and football (Vol. 5, pp. 237–242). London: Taylor & Francis.Google Scholar
  37. Müller, S., Abernethy, B., & Farrow, D. (2006). How do worldclass cricket batsmen anticipate a bowler’s intention? Quarterly Journal of Experimental Psychology, 59, 2162–2186. doi:10.1080/ 02643290600576595CrossRefGoogle Scholar
  38. Müller, S., Abernethy, B., Reece, J., Rose, M., Eid, M., Mc-Bean, R., et al. (2009). An in-situ examination of the timing of information pick-up for interception by cricket batsmen of different skill levels. Psychology of Sport & Exercise, 10, 644–652. doi:10.1016/j.psychsport.2009.04.002CrossRefGoogle Scholar
  39. Newell, K. M., Liu, Y. T., & Mayer-Kress, G. (2001). Time scales in motor learning and development. Psychological Review, 108, 57–82. doi:10.1037//0033-295X.108.1.57PubMedCrossRefGoogle Scholar
  40. Oudejans, R. R. D., Michaels, C. F., Bakker, F. C., & Dolné, M. A. (1996). The relevance of action in perceiving affordances: Perception of catchableness of fly balls. Journal of Experimental Psychology: Human Perception & Performance, 22, 879–891.CrossRefGoogle Scholar
  41. Panchuk, D., & Vickers, J. N. (2006). Gaze behaviors of goaltenders under spatial-temporal constraints. Human Movement Science, 25, 733–752. doi:10.1016/j.humov.2006.07.001PubMedCrossRefGoogle Scholar
  42. Rowe, R., Horswill, M. S., Kronvall-Parkinson, M., Poulter, D. R., & McKenna, F. P. (2009). The effect of disguise on novice and expert tennis players’ anticipation ability. Journal of Applied Sport Psychology, 21, 178–185. doi:10.1080/10413200902785811CrossRefGoogle Scholar
  43. Savelsbergh, G. J. P., van der Kamp, J., Williams, A. M., & Ward, P. (2005). Anticipation and visual search behavior in expert soccer goalkeepers. Ergonomics, 48, 1686–1697. doi:10.1080/ 00140130500101346PubMedCrossRefGoogle Scholar
  44. Savelsbergh, G. J. P., Williams, A. M., van der Kamp, J., & Ward, P. (2002). Visual search, anticipation and expertise in soccer goalkeepers. Journal of Sports Sciences, 20, 279–287.PubMedCrossRefGoogle Scholar
  45. Schorer, J., Baker, J., Fath, F., & Jaitner, T. (2007). Identification of interindividual and intraindividual movement patterns in handball players of varying expertise levels. Journal of Motor Behavior, 39, 409–421.PubMedCrossRefGoogle Scholar
  46. Sebanz, N., & Shiffrar, M. (2009). Detecting deception in a bluffing body: The role of expertise. Psychonomic Bulletin & Review, 16, 170–175. doi:10.3758/PBR.16.1.170CrossRefGoogle Scholar
  47. Shim, J., Carlton, L. G., Chow, J. W., & Chae, W. K. (2005). The use of anticipatory visual cues by highly skilled tennis players. Journal of Motor Behavior, 37, 164–175.PubMedCrossRefGoogle Scholar
  48. Singer, R. N., Cauraugh, J. H., Chen, D., Steinberg, G. M., & Frehlich, S. G. (1996). Visual search, anticipation, and reactive comparisons between highly skilled and beginning tennis players. Journal of Applied Sport Psychology, 8, 9–26.CrossRefGoogle Scholar
  49. Smeeton, N. J., Williams, A. M., Hodges, N. J., & Ward, P. (2005). The relative effectiveness of various instructional approaches in developing anticipation skill. Journal of Experimental Psychology: Applied, 11, 98–110. doi:10.1037/1076-898X.11.2.98PubMedCrossRefGoogle Scholar
  50. Van der Kamp, J. (2006). A field simulation study of the effectiveness of penalty kick strategies in soccer: Late alterations of kick direction increase errors and reduce accuracy. Journal of Sports Sciences, 24, 467–477. doi:10.1080/02640410500190841PubMedCrossRefGoogle Scholar
  51. Van der Kamp, J., Oudejans, R. R. D., & Savelsbergh, G. J. P. (2003). The development and learning of the visual control of movement: An ecological perspective. Infant Behavior & Development, 26, 495–515. doi:10.1016/j.infbeh.2003.09.002CrossRefGoogle Scholar
  52. Van der Kamp, J., Rivas, F., van Doorn, H., & Savelsbergh, G. J. P. (2008). Ventral and dorsal contributions in visual anticipation in fast ball sports. International Journal of Sport Psychology, 39, 100–130.Google Scholar
  53. Van der Kamp, J., Savelsbergh, G. J. P., & Smeets, J. (1997). Multiple information sources in interceptive timing. Human Movement Science, 16, 787–821.CrossRefGoogle Scholar
  54. Van der Kamp, J., van Doorn, H., & Masters, R. S. W. (2009). A Judd illusion in far-aiming: Evidence of a contribution to action by vision for perception. Experimental Brain Research, 197, 199–204. doi:10.1007/s00221-009-1889-zCrossRefGoogle Scholar
  55. Van Dongen, H. P., Caldwell, J. A., Jr., & Caldwell, J. L. (2006). Investigating systematic individual differences in sleep-deprived performance on a high-fidelity flight simulator. Behavior Research Methods, 38, 333–343.PubMedCrossRefGoogle Scholar
  56. Van Doorn, H., van der Kamp, J., de Wit, M., & Savelsbergh, G. J. P. (2009). Another look at the Müller-Lyer illusion: Different gaze patterns in vision for action and perception. Neuropsychologia, 47, 804–812. doi:10.1016/j.neuropsychologia.2008.12.003PubMedCrossRefGoogle Scholar
  57. Van Doorn, H., van der Kamp, J., & Savelsbergh, G. J. P. (2007). Grasping the Müller-Lyer illusion: The contributions of vision for perception and vision for action. Neuropsychologia, 45, 1939–1947. doi:10.1016/j.neuropsychologia.2006.11.008PubMedCrossRefGoogle Scholar
  58. Vicente, K. J. (2003). Beyond the lens model and direct perception: Toward a broader ecological psychology. Ecological Psychology, 15, 241–267.CrossRefGoogle Scholar
  59. Vickers, J. N. (1996). Visual control when aiming at a far target. Journal of Experimental Psychology: Human Perception & Performance, 22, 342–354.CrossRefGoogle Scholar
  60. Vickers, J. N. (2007). Perception, cognition, and decision training: The quiet eye in action. Champaign, Il: Human Kinetics.Google Scholar
  61. Warren, W. H., Jr. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception & Performance, 10, 683–703.CrossRefGoogle Scholar
  62. Warren, W. H., [Jr.] (2006). The dynamics of perception and action. Psychological Review, 113, 358–389. doi:10.1037/0033-295X.113.2.358PubMedCrossRefGoogle Scholar
  63. Wigton, R. S. (2008). What do the theories of Egon Brunswik have to say to medical education? Advances in Health Sciences Education, 13, 109–121. doi:10.1007/s10459-006-9023-5PubMedCrossRefGoogle Scholar
  64. Williams, A. M., & Burwitz, L. (1993). Advance cue utilization in soccer. In T. Reilly, J. Clarys, & A. Stibbe (Eds.), Science and football (Vol. 2, pp. 239–244). London: Spon.Google Scholar
  65. Williams, A. M., Davids, K., & Williams, J. G. (1999). Visual perception and action in sport. London: Spon.Google Scholar
  66. Williams, A. M., & Griffiths, I. W. (2002). A kinematic analysis of the prevalence of pre-impact cues in the football penalty kick. Journal of Sports Sciences, 20, 74.Google Scholar
  67. Williams, A. M., Ward, P., Knowles, J. M., & Smeeton, N. J. (2002). Anticipation skill in a real-world task: Measurement, training, and transfer in tennis. Journal of Experimental Psychology: Applied, 8, 259–270. doi:10.1037/1076-898X.8.4.259PubMedCrossRefGoogle Scholar
  68. Withagen, R., & Chemero, A. (2009). Naturalizing perception: Developing the Gibsonian approach to perception along evolutionary lines. Theory & Psychology, 19, 363–389. doi:10.1177/0959354309104159CrossRefGoogle Scholar
  69. Withagen, R., & van Mermeskerken, M. (2009). Individual differences in learning to perceive length by dynamic touch: Evidence for variation in perceptual learning capacities. Attention, Perception, & Psychophysics, 71, 64–75. doi:10.3758/APP.71.1.64Google Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  1. 1.Institute of Cognitive and Team/Racket Sport ResearchGerman Sport University CologneCologneGermany
  2. 2.University of OtagoDunedinNew Zealand
  3. 3.Queensland University of TechnologyBrisbaneAustralia

Personalised recommendations