Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Attention, Perception, & Psychophysics
  3. Article

Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions

  • Tutorial Review
  • Published: April 2010
  • Volume 72, pages 561–582, (2010)
  • Cite this article
Download PDF
Attention, Perception, & Psychophysics Aims and scope Submit manuscript
Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions
Download PDF
  • Simon Grondin1 
  • 31k Accesses

  • 616 Citations

  • 207 Altmetric

  • 29 Mentions

  • Explore all metrics

Abstract

The aim of the present review article is to guide the reader through portions of the human time perception, or temporal processing, literature. After distinguishing the main contemporary issues related to time perception, the article focuses on the main findings and explanations that are available in the literature on explicit judgments about temporal intervals. The review emphasizes studies that are concerned with the processing of intervals lasting a few milliseconds to several seconds and covers studies issuing from either a behavioral or a neuroscience approach. It also discusses the question of whether there is an internal clock (pacemaker counter or oscillator device) that is dedicated to temporal processing and reports the main hypotheses regarding the involvement of biological structures in time perception.

Article PDF

Download to read the full article text

Similar content being viewed by others

Twenty years of load theory—Where are we now, and where should we go next?

Article 04 January 2016

Gillian Murphy, John A. Groeger & Ciara M. Greene

PsychoPy2: Experiments in behavior made easy

Article Open access 07 February 2019

Jonathan Peirce, Jeremy R. Gray, … Jonas Kristoffer Lindeløv

No one knows what attention is

Article Open access 05 September 2019

Bernhard Hommel, Craig S. Chapman, … Timothy N. Welsh

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Alexander, I., Cowey, A., & Walsh, V. (2005). The right parietal cortex and time perception: Back to Critchley and the Zeitraffer phenomenon. Cognitive Neuropsychology, 22, 306–315. doi:10.1080/02643290442000356

    Article  PubMed  Google Scholar 

  • Allan, L. G., & Church, R. M. (EDS.) (2002). Special issue honoring the career of Professor John Gibbon. Learning & Motivation, 33(1). doi:10.1006/lmot.2001.1114

  • Allan, L. G., & Gerhardt, K. (2001). Temporal bisection with trial referents. Perception & Psychophysics, 63, 524–540.

    Article  Google Scholar 

  • Allan, L. G., & Kristofferson, A. B. (1974). Psychophysical theories of duration discrimination. Perception & Psychophysics, 16, 26–34.

    Article  Google Scholar 

  • Allan, L. G., Kristofferson, A. B., & Wiens, E. W. (1971). Duration discrimination of brief light flashes. Perception & Psychophysics, 9, 327–334.

    Article  Google Scholar 

  • Angrilli, A., Cherubini, P., Pavese, A., & Mantredini, S. (1997). The influence of affective factors on time perception. Perception & Psychophysics, 59, 972–982.

    Article  Google Scholar 

  • Arao, H., Suetomi, D., & Nakajima, Y. (2000). Does time-shrinking take place in visual temporal patterns? Perception, 29, 819–830. doi:10.1068/p2853

    Article  PubMed  Google Scholar 

  • Barnes, R., & Jones, M. R. (2000). Expectancy, attention, and time. Cognitive Psychology, 41, 254–311. doi:10.1006/cogp.2000.0738

    Article  PubMed  Google Scholar 

  • Belin, P., McAdams, S., Thivard, L., Smith, B., Savel, S., Zilbovicius, M., et al. (2002). The neuroanatomical substrate of sound duration discrimination. Neuropsychologia, 40, 1956–1964. doi:10.1016/S0028-3932(02)00062-3

    Article  PubMed  Google Scholar 

  • Bendixen, A., Grimm, S., & Schroger, E. (2006). The relation between onset, offset, and duration perception as examined by psychophysical data and event-related brain potentials. Journal of Psychophysiology, 20, 40–51. doi:10.1027/0269-8803.20.1.40

    Article  Google Scholar 

  • Bindra, D., & Waksberg, H. (1956). Methods and terminology in studies of time estimation. Psychological Bulletin, 53, 155–159. doi:10.1037/h0041810

    Article  PubMed  Google Scholar 

  • Bisson, N., Tobin, S., & Grondin, S. (2009). Remembering the duration of joyful and sad musical excerpts. NeuroQuantology, 7, 46–57.

    Google Scholar 

  • Block, R. A. (1990). Cognitive models of psychological time. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Block, R. A. (2003). Psychological timing without a timer: The roles of attention and memory. In H. Helfrich (Ed.), Time and mind II (pp. 41–60). Göttingen: Hogrefe & Huber.

    Google Scholar 

  • Block, R. A., & Zakay, D. (1997). Prospective and retrospective duration judgments: A meta-analytic review. Psychonomic Bulletin & Review, 4, 184–197.

    Article  Google Scholar 

  • Block, R. A., & Zakay, D. (2008). Timing and remembering the past, the present, and the future. In S. Grondin (Ed.), Psychology of time (pp. 367–394). Bingley, U.K.: Emerald Group.

    Google Scholar 

  • Block, R. A., Zakay, D., & Hancock, P. A. (1999). Developmental changes in human duration judgments: A meta-analytic review. Developmental Review, 19, 183–211. doi:10.1006/drev.1998.0475

    Article  Google Scholar 

  • Boets, B., Wouters, J., Van Wieringen, A., & Ghesquière, P. (2006). Auditory temporal information processing in preschool children at family risk for dyslexia: Relations with phonological abilities and developing literacy skills. Brain & Language, 97, 64–79. doi:10.1016/j.bandl.2005.07.026

    Article  Google Scholar 

  • Boltz, M. G. (1992). The remembering of auditory event durations. Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 938–956. doi:10.1037/0278-7393.18.5.938

    Article  Google Scholar 

  • Boltz, M. G. (1994). Changes in internal tempo and effects on the learning and remembering of event durations. Journal of Experimental Psychology: Learning, Memory, & Cognition, 20, 1154–1171. doi:10.1037/0278-7393.20.5.1154

    Article  Google Scholar 

  • Boltz, M. G. (1995). Effects of event structure on retrospective duration judgments. Perception & Psychophysics, 57, 1080–1096.

    Article  Google Scholar 

  • Boltz, M. G. (2005). Duration judgments of naturalistic events in the auditory and visual modalities. Perception & Psychophysics, 67, 1362–1375.

    Article  Google Scholar 

  • Braitenberg, V. (1967). Is the cerebellar cortex a biological clock in the millisecond range? Progress in Brain Research, 25, 334–346.

    Article  PubMed  Google Scholar 

  • Brown, S. W. (1997). Attentional resources in timing: Interference effects in concurrent temporal and nontemporal working memory tasks. Perception & Psychophysics, 59, 1118–1140.

    Article  Google Scholar 

  • Brown, S. W. (2006). Timing and executive function: Bidirectional interference between concurrent temporal production and randomization tasks. Memory & Cognition, 34, 1464–1471.

    Article  Google Scholar 

  • Brown, S. W. (2008). Time and attention: Review of the literature. In S. Grondin (Ed.), Psychology of time (pp. 111–138). Bingley, U.K.: Emerald Group.

    Google Scholar 

  • Brown, S. W., & Boltz, M. (2002). Attentional processes in time perception: Effects of mental workload and event structure. Journal of Experimental Psychology: Human Perception & Performance, 28, 600–615. doi:10.1037/0096-1523.28.3.600

    Article  Google Scholar 

  • Brown, S. W., & Merchant, S. M. (2007). Processing resources in timing and sequencing tasks. Perception & Psychophysics, 69, 439–449.

    Article  Google Scholar 

  • Brown, S. W., & Stubbs, D. A. (1988). The psychophysics of retrospective and prospective timing. Perception, 17, 297–310. doi:10.1068/p170297

    Article  PubMed  Google Scholar 

  • Brown, S. W., Stubbs, D. A., & West, A. N. (1992). Attention, multiple timing, and psychophysical scaling of temporal judgments. In F. Macar, V. Pouthas & W. J. Friedman (Eds.), Time, action, and cognition: Towards bridging the gap (pp. 129–140). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Brown, S. W., & West, A. N. (1990). Multiple timing and the allocation of attention. Acta Psychologica, 75, 103–121. doi:10.1016/0001-6918(90)90081-P

    Article  PubMed  Google Scholar 

  • Buccheri, R., Saniga, M., & Stuckey, M. (EDS.) (2003). The nature of time: Geometry, physics and perception. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Bueti, D., Bahrami, B., & Walsh, V. (2008). Sensory and associative cortex in time perception. Journal of Cognitive Neuroscience, 20, 1054–1062. doi:10.1162/jocn.2008.20060

    Article  PubMed  Google Scholar 

  • Bueti, D., Walsh, V., Frith, C., & Rees, G. (2008). Different brain circuits underlie motor and perceptual representations of temporal intervals. Journal of Cognitive Neuroscience, 20, 204–214. doi:10.1162/jocn.2008.20017

    Article  PubMed  Google Scholar 

  • Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6, 755–765. doi:10.1038/nrn1764

    Article  PubMed  Google Scholar 

  • Buhusi, C. V., & Meck, W. H. (2009). Relative time sharing: New findings and an extension of the resource allocation model of temporal processing. Philosophical Transactions of the Royal Society B, 364, 1875–1885.

    Article  Google Scholar 

  • Buonomano, D. V. (2007). The biology of time across different scales. Nature Chemical Biology, 3, 594–597.

    Article  PubMed  Google Scholar 

  • Burle, B., & Casini, L. (2001). Dissociation between activation and attention effects in time estimation: Implications for internal clock models. Journal of Experimental Psychology: Human Perception & Performance, 27, 195–205. doi:10.1037/0096-1523.27.1.195

    Article  Google Scholar 

  • Burr, D., Tozzi, A., & Morrone, M. C. (2007). Neural mechanisms for timing visual events are spatially selective in real-world coordinates. Nature Neuroscience, 10, 423–425. doi:10.1038/nn1874

    PubMed  Google Scholar 

  • Carroll, C. A., O’Donnell, B. F., Shekhar, A., & Hetrick, W. P. (2009). Timing dysfunctions in schizophrenia span from millisecond to several-second durations. Brain & Cognition, 70, 181–190. doi:10.1016/j.bandc.2009.02.001

    Article  Google Scholar 

  • Caruso, E. M., Gilbert, D. T., & Wilson, T. D. (2008). A wrinkle in time: Asymmetric valuation of past and future events. Psychological Science, 19, 796–801. doi:10.1111/j.1467-9280.2008.02159.x

    Article  PubMed  Google Scholar 

  • Casini, L., & Macar, F. (1997). Effects of attention manipulation on judgments of duration and of intensity in the visual modality. Memory & Cognition, 25, 812–818.

    Article  Google Scholar 

  • Chambon, M., Gil, S., Niedenthal, P. M., & Droit-Volet, S. (2005). Psychologie sociale et perception du temps: l’estimation temporelle des stimuli sociaux et émotionnels [Social psychology and time perception: The temporal estimation of social and emotional stimuli]. Psychologie Française, 50, 167–180. doi:10.1016/j.psfr.2004.10.008

    Article  Google Scholar 

  • Church, R. M. (1997). Timing and temporal search. In C. M. Bradshaw & E. Szabadi (Eds.), Time and behavior: Psychological and neurobehavioral analyses (pp. 41–78). Amsterdam: Elsevier, North-Holland.

    Chapter  Google Scholar 

  • Church, R. M. (2003). A concise introduction to the scalar timing theory. In W. H. Meck (Ed.), Functional and neural mechanisms of interval timing (pp. 3–22). Boca Raton, FL: CRC.

    Google Scholar 

  • Church, R. M., & Broadbent, H. A. (1990). Alternative representations of time, number, and rate. Cognition, 37, 55–81. doi:10.1016/0010-0277(90)90018-F

    Article  PubMed  Google Scholar 

  • Coull, J. T., Vidal, F., Nazarian, B., & Macar, F. (2004). Functional anatomy of the attentional modulation of time estimation. Science, 303, 1506–1508.

    Article  PubMed  Google Scholar 

  • Creelman, C. D. (1962). Human discrimination of auditory duration. Journal of the Acoustical Society of America, 34, 582–593. doi:10.1121/1.1918172

    Article  Google Scholar 

  • Crystal, J. D. (ED.) (2007). The psychology of time: A tribute to the contributions of Russell M. Church [Special Issue]. Behavioural Processes, 74(2).

  • Damasio, A. R. (2002). Remembering when. Scientific American, 287, 66–73.

    Article  PubMed  Google Scholar 

  • Danckert, J., Ferber, S., Pun, C., Broderick, C., Striemer, C., Rock, S., & Stewart, D. (2007). Neglected time: Impaired temporal perception of multisecond intervals in unilateral neglect. Journal of Cognitive Neuroscience, 19, 1706–1720. doi:10.1162/jocn.2007.19.10.1706

    Article  PubMed  Google Scholar 

  • Davalos, D. B., Kisley, M. A., & Freedman, R. (2005). Behavioral and electrophysiological indices of temporal processing dysfunction in schizophrenia. Journal of Neuropsychiatry & Clinical Neurosciences, 17, 517–525.

    Article  Google Scholar 

  • Davalos, D. B., Kisley, M. A., Polk, S. D., & Ross, R. G. (2003). Mismatch negativity in detection of interval duration deviation in schizophrenia. Cognitive Neuroscience & Neuropsychology, 14, 1283–1286. doi:10.1097/00001756-200307010-00019

    Google Scholar 

  • Davalos, D. B., Kisley, M. A., & Ross, R. G. (2002). Deficits in auditory and visual temporal perception in schizophrenia. Cognitive Neuropsychiatry, 7, 273–282. doi:10.1080/13546800143000230

    Article  PubMed  Google Scholar 

  • Davalos, D. B., Kisley, M. A., & Ross, R. G. (2003). Effects of interval duration on temporal processing in schizophrenia. Brain & Cognition, 52, 295–301. doi:10.1016/S0278-2626(03)00157-X

    Article  Google Scholar 

  • Drake, C., & Botte, M.-C. (1993). Tempo sensitivity in auditory sequences: Evidence for a multiple-look model. Perception & Psychophysics, 54, 277–286.

    Article  Google Scholar 

  • Droit-Volet, S., Brunot, S., & Niedenthal, P. M. (2004). Perception of the duration of emotional events. Cognition & Emotion, 18, 849–858. doi:10.1080/02699930341000194

    Article  Google Scholar 

  • Droit-Volet, S., & Gil, S. (2009). Emotion and time perception. Philosophical Transactions of the Royal Society B, 364, 1943–1953.

    Article  Google Scholar 

  • Droit-Volet, S., & Meck, W. H. (2007). How emotions colour our perception of time. Trends in Cognitive Sciences, 11, 504–513. doi:10.1016/j.tics.2007.09.008

    Article  PubMed  Google Scholar 

  • Droit-Volet, S., Meck, W. H., & Penney, T. B. (2007). Sensory modality and time perception in children and adults. Behavioural Processes, 74, 244–250. doi:10.1016/j.beproc.2006.09.012

    Article  PubMed  Google Scholar 

  • Droit-Volet, S., Wearden, J. H., & Delgado, M. D. (2007). Shortterm memory for time in children and adults: A behavioral study and a model. Journal of Experimental Child Psychology, 97, 246–264. doi:10.1016/j.jecp.2007.02.003

    Article  PubMed  Google Scholar 

  • Eagleman, D. M. (2008). Human time perception and its illusions. Current Opinion in Neurobiology, 18, 131–136. doi:10.1016/j.conb.2008.06.002

    Article  PubMed  Google Scholar 

  • Edwards, V. T., Giaschi, D. E., Dougherty, R. F., Edgell, D., Bjornson, B. H., Lyons, C., & Douglas, R. M. (2004). Psychophysical indexes of temporal processing abnormalities in children with developmental dyslexia. Developmental Neuropsychology, 25, 321–354. doi:10.1207/s15326942dn2503_5

    Article  PubMed  Google Scholar 

  • Effron, D. A., Niedenthal, P. M., Gil, S., & Droit-Volet, S. (2006). Embodied temporal perception of emotion. Emotion, 6, 1–9. doi:10.1037/1528-3542.6.1.1

    Article  PubMed  Google Scholar 

  • Eisler, A. D., Eisler, H., & Montgomery, H. (2004). A quantitative model for retrospective subjective duration. NeuroQuantology, 4, 263–291.

    Google Scholar 

  • Eisler, H. (1975). Subjective duration and psychophysics. Psychological Review, 82, 429–450. doi:10.1037/0033-295X.82.6.429

    Article  PubMed  Google Scholar 

  • Eisler, H. (1976). Experiments on subjective duration 1878–1975: A collection of power function exponents. Psychological Bulletin, 83, 1154–1171. doi:10.1037/0033-2909.83.6.1154

    Article  PubMed  Google Scholar 

  • Eisler, H. (2003). The parallel-clock model: A tool for quantification of experienced duration. In R. Buccheri, M. Saniga, & M. Stuckey (Eds.), The nature of time: Geometry, physics and perception (pp. 19–26). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Eisler, H., & Eisler, A. D. (1992). Time perception: Effects of sex and sound intensity on scales of subjective duration. Scandinavian Journal of Psychology, 33, 339–358. doi:10.1111/j.1467-9450.1992.tb00923.x

    Article  PubMed  Google Scholar 

  • Eisler, H., Eisler, A. D., & Hellström, Å. (2008). Psychophysical issues in the study of time perception. In S. Grondin (Ed.), Psychology of time (pp. 75–110). Bingley, U.K.: Emerald Group.

    Google Scholar 

  • Elvevåg, B., Brown, G. D. A., McCormack, T., Vousden, J. I., & Goldberg, T. E. (2004). Identification of tone duration, line length, and letter position: An experimental approach to timing and working memory deficits in schizophrenia. Journal of Abnormal Psychology, 113, 509–521. doi:10.1037/0021-843X.113.4.509

    Article  PubMed  Google Scholar 

  • Elvevåg, B., McCormack, T., Gilbert, A., Brown, G. D. A., Weinberger, D. R., & Goldberg, T. E. (2003). Duration judgments in patients with schizophrenia. Psychological Medicine, 33, 1249–1261.

    Article  PubMed  Google Scholar 

  • Ferrandez, A. M., Hugueville, L., Lehericy, S., Poline, J. B., Marsault, C., & Pouthas, V. (2003). Basal ganglia and supplementary motor area subtend duration perception: An fMRI study. NeuroImage, 19, 1532–1544.

    Article  PubMed  Google Scholar 

  • Field, D. T., & Groeger, J. A. (2004). Temporal interval production and short-term memory. Perception & Psychophysics, 66, 808–819.

    Article  Google Scholar 

  • Ford, M. P., Wagenaar, R. C., & Newell, K. M. (2007). The effects of auditory rhythms and instruction on walking patterns in individuals post stroke. Gait & Posture, 26, 150–155.

    Article  Google Scholar 

  • Fortin, C., Bédard, M.-C., & Champagne, J. (2005). Timing during interruptions in timing. Journal of Experimental Psychology: Human Perception & Performance, 31, 276–288. doi:10.1037/0096-1523.31.2.276

    Article  Google Scholar 

  • Fortin, C., Fairhurst, S., Malapani, C., Morin, C., Towey, J., & Meck, W. H. (2009). Expectancy in humans in multisecond peakinterval timing with gaps. Attention, Perception, & Psychophysics, 71, 789–802.

    Article  Google Scholar 

  • Fraisse, P. (1956). Les structures rythmiques [Rhythmic structures]. Louvain, Belgium: Studia Psychologica.

    Google Scholar 

  • Fraisse, P. (1957). Psychologie du temps [Psychology of time]. Paris: Presses Universitaires de France.

    Google Scholar 

  • Fraisse, P. (1978). Time and rhythm perception. In E. Carterette & M. Friedman (Eds.), Handbook of perception: Vol. 8. Perceptual coding (pp. 203–254). New York: Academic Press.

    Google Scholar 

  • Fraisse, P. (1984). Perception and estimation of time. Annual Review of Psychology, 35, 1–36.

    Article  PubMed  Google Scholar 

  • Frassinetti, F., Magnani, B., & Oliveri, M. (2009). Prismatic lenses shift time perception. Psychological Science, 20, 949–954. doi:10.1111/j.1467-9280.2009.02390.x

    Article  PubMed  Google Scholar 

  • Friberg, A., & Sundberg, J. (1995). Time discrimination in a monotonic, isochronic sequence. Journal of the Acoustical Society of America, 98, 2524–2531. doi:10.1121/1.413218

    Article  Google Scholar 

  • Friedman, W. J. (1993). Memory for the time of past events. Psychological Bulletin, 113, 44–66. doi:10.1037/0033-2909.113.1.44

    Article  Google Scholar 

  • Friedman, W. J. (2008). Developmental perspectives on the psychology of time. In S. Grondin (Ed.), Psychology of time (pp. 345–366). Bingley, U.K.: Emerald Group.

    Google Scholar 

  • Gamache, P.-L., & Grondin, S. (2008). Temporal limits of memory for time. In B. Schneider, B. M. Ben-David, S. Parker, & W. Wong (Eds.), Fechner Day 2008: Proceedings of the 24th Annual Meeting of the ISP (pp. 173–178). Toronto: The ISP.

    Google Scholar 

  • Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychological Review, 84, 279–325.

    Article  Google Scholar 

  • Gibbon, J. (1991). Origins of scalar timing. Learning & Motivation, 22, 3–38. doi:10.1016/0023-9690(91)90015-Z

    Article  Google Scholar 

  • Gibbon, J. (1992). Ubiquity of scalar timing with a Poisson clock. Journal of Mathematical Psychology, 36, 283–293. doi:10.1016/0022-2496(92)90041-5

    Article  Google Scholar 

  • Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 52–77). New York: New York Academy of Sciences.

    Google Scholar 

  • Gil, S., Niedenthal, P. M., & Droit-Volet, S. (2007). Anger and time perception in children. Emotion, 7, 219–225. doi:10.1037/1528-3542.7.1.219

    Article  PubMed  Google Scholar 

  • Gilden, D. L., & Marusich, L. R. (2009). Contraction of time in attention-deficit hyperactivity disorder. Neuropsychology, 23, 265–269. doi:10.1037/a0014553

    Article  PubMed  Google Scholar 

  • Glicksohn, J. (2001). Temporal cognition and the phenomenology of time: A multiplicative function for apparent duration. Consciousness & Cognition, 10, 1–25. doi:10.1006/ccog.2000.0468

    Article  Google Scholar 

  • Glicksohn, J., & Cohen, Y. (2000). Can music alleviate cognitive dysfunction in schizophrenia? Psychopathology, 33, 43–47. doi:10.1159/000029118

    Article  PubMed  Google Scholar 

  • Glicksohn, J., & Myslobodsky, M. S. (EDS.) (2006). Timing the future: The case for a time-based prospective memory. London: World Scientific Publishing.

    Google Scholar 

  • Goldreich, D. (2007). A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions. PLoS ONE, 2, e333. doi:10.1371/journal.pone.0000333

    Article  PubMed  Google Scholar 

  • Goldstone, S., & Lhamon, W. T. (1974). Studies of auditory-visual differences in human time judgment: I. Sounds are judged longer than lights. Perceptual & Motor Skills, 39, 63–82.

    Article  Google Scholar 

  • Grondin, S. (1993). Duration discrimination of empty and filled intervals marked by auditory and visual signals. Perception & Psychophysics, 54, 383–394.

    Article  Google Scholar 

  • Grondin, S. (2001a). Discriminating time intervals presented in sequences marked by visual signals. Perception & Psychophysics, 63, 1214–1228.

    Article  Google Scholar 

  • Grondin, S. (2001b). From physical time to the first and second moments of psychological time. Psychological Bulletin, 127, 22–44. doi:10.1037/0033-2909.127.1.22

    Article  PubMed  Google Scholar 

  • Grondin, S. (2001c). A temporal account of the limited processing capacity. Behavioral & Brain Sciences, 24, 122–123.

    Article  Google Scholar 

  • Grondin, S. (2003). Sensory modalities and temporal processing. In H. Helfrich (Ed.), Time and mind II (pp. 61–77). Göttingen: Hogrefe & Huber.

    Google Scholar 

  • Grondin, S. (2005). Overloading temporal memory. Journal of Experimental Psychology: Human Perception & Performance, 31, 869–879. doi:10.1037/0096-1523.31.5.869

    Article  Google Scholar 

  • Grondin, S. (2008a). Methods for studying psychological time. In S. Grondin (Ed.), Psychology of time (pp. 51–74). Bingley, U.K.: Emerald Group.

    Google Scholar 

  • Grondin, S. (ED.) (2008b). Psychology of time. Bingley, U.K.: Emerald Group.

    Google Scholar 

  • Grondin, S., Bisson, N., Gagnon, C., Gamache, P.-L., & Matteau, A.-A. (2009). Little to be expected from auditory training for improving visual temporal discrimination. NeuroQuantology, 7, 95–102.

    Google Scholar 

  • Grondin, S., Dionne, G., Malenfant, N., Plourde, M., Cloutier, M.-E., & Jean, C. (2007). Temporal processing skills of children with and without specific language impairment. Canadian Journal of Speech-Language Pathology & Audiology, 31, 38–46.

    Google Scholar 

  • Grondin, S., Gamache, P.-L., Tobin, S., Bisson, N., & Hawke, L. (2008). Categorization of brief temporal intervals: An auditory processing context may impair visual performances. Acoustical Science & Technology, 29, 338–340.

    Article  Google Scholar 

  • Grondin, S., & Killeen, P. R. (2009). Tracking time with song and count: Different Weber functions for musicians and nonmusicians. Attention, Perception, & Psychophysics, 71, 1649–1654.

    Article  Google Scholar 

  • Grondin, S., & Macar, F. (1992). Dividing attention between temporal and nontemporal tasks: A performance operating characteristic— POC—analysis. New York: Kluwer Academic/Plenum.

    Google Scholar 

  • Grondin, S., & McAuley, J. D. (2009). Duration discrimination in crossmodal sequences. Perception, 38, 1542–1559.

    Article  PubMed  Google Scholar 

  • Grondin, S., Meilleur-Wells, G., & Lachance, R. (1999). When to start explicit counting in a time-intervals discrimination task: Acritical point in the timing process of humans. Journal of Experimental Psychology: Human Perception & Performance, 25, 993–1004. doi:10.1037/0096-1523.25.4.993

    Article  Google Scholar 

  • Grondin, S., Ouellet, B., & Roussel, M.-E. (2004). Benefits and limits of explicit counting for discriminating temporal intervals. Canadian Journal of Experimental Psychology, 58, 1–12. doi:10.1037/h0087436

    Article  PubMed  Google Scholar 

  • Grondin, S., & Plourde, M. (2007a). Discrimination of time intervals presented in sequences: Spatial effects with multiple auditory sources. Human Movement Science, 26, 702–716. doi:10.1016/j.humov.2007.07.009

    Article  PubMed  Google Scholar 

  • Grondin, S., & Plourde, M. (2007b). Judging multi-minute intervals retrospectively. Quarterly Journal of Experimental Psychology, 60, 1303–1312. doi:10.1080/17470210600988976

    Article  Google Scholar 

  • Grondin, S., Pouthas, V., Samson, S., & Roy, M. (2006). Mécanismes et désordres liés à l’adaptation au temps [Mechanisms and disorders related to the adaptation to time]. Canadian Psychology, 47, 170–183. doi:10.1037/cp2006007

    Google Scholar 

  • Grondin, S., & Rammsayer, T. (2003). Variable foreperiods and temporal discrimination. Quarterly Journal of Experimental Psychology, 56A, 731–765. doi:10.1080/02724980244000611

    Google Scholar 

  • Grondin, S., & Rousseau, R. (1991). Judging the relative duration of multimodal short empty time intervals. Perception & Psychophysics, 49, 245–256.

    Article  Google Scholar 

  • Grondin, S., Roussel, M.-E., Gamache, P.-L., Roy, M., & Ouellet, B. (2005). The structure of sensory events and the accuracy of time judgments. Perception, 34, 45–58. doi:10.1068/p5369

    Article  PubMed  Google Scholar 

  • Guillot, A., & Collet, C. (2005). Duration of mentally simulated movement: A review. Journal of Motor Behavior, 37, 10–20. doi:10.3200/JMBR.37.1.10-20

    Article  PubMed  Google Scholar 

  • Handy, T. C., Gazzaniga, M. S., & Ivry, R. B. (2003). Cortical and subcortical contributions to the representation of temporal information. Neuropsychologia, 41, 1461–1473. doi:10.1016/S0028-3932(03)00093-9

    Article  PubMed  Google Scholar 

  • Harrington, D. L., & Haaland, K. Y. (1999). Neural underpinnings of temporal processing: A review of focal lesion, pharmacological, and functional imaging research. Reviews in the Neurosciences, 10, 91–116.

    Article  PubMed  Google Scholar 

  • Harrington, D. L., Lee, R. R., Boyd, L. A., Rapcsak, S. Z., & Knight, R. T. (2004). Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain, 127, 1–14. doi:10.1093/brain/awh065

    Article  Google Scholar 

  • Hecht, H., & Savelsbergh, G. (Eds.) (2004). Time-to-contact (Advances in Psychology, Vol. 135). Amsterdam: Elsevier, North-Holland.

    Google Scholar 

  • Helfrich, H. (ED.) (2003). Time and mind II: Information processing perspectives. Seattle: Hogrefe & Huber.

    Google Scholar 

  • Hellström, Å. (1985). The time-order error and its relatives: Mirrors of cognitive processes in comparing. Psychological Bulletin, 97, 35–61. doi:10.1037/0033-2909.97.1.35

    Article  Google Scholar 

  • Hellström, Å., & Rammsayer, T. H. (2004). Effects of time-order, interstimulus interval, and feedback in duration discrimination of noise bursts in the 50- and 1000-ms ranges. Acta Psychologica, 116, 1–20. doi:10.1016/j.actpsy.2003.11.003

    Article  PubMed  Google Scholar 

  • Helson, H. (1964). Adaptation-level theory. New York: Harper & Row.

    Google Scholar 

  • Hemmes, N. S., Brown, B. L., & Kladopoulos, C. N. (2004). Time perception with and without a concurrent nontemporal task. Perception & Psychophysics, 66, 328–341.

    Article  Google Scholar 

  • Henry, M. J., & McAuley, J. D. (2009). Evaluation of an imputed pitch velocity model of the auditory kappa effect. Journal of Experimental Psychology: Human Perception & Performance, 35, 551–564. doi:10.1037/0096-1523.35.2.551

    Article  Google Scholar 

  • Henry, M. J., McAuley, J. D., & Zaleha, M. (2009). Perceived pitch depends on perceived time: Further test of an auditory motion hypothesis. Attention, Perception, & Psychophysics, 71, 1399–1413.

    Article  Google Scholar 

  • Hicks, R. E., Miller, G. W., & Kinsbourne, M. (1976). Prospective and retrospective judgments of time as a function of amount of information processed. American Journal of Psychology, 89, 719–730. doi:10.2307/1421469

    Article  PubMed  Google Scholar 

  • Hinton, S. C., Harrington, D. L., Binder, J. R., Durgerian, S., & Rao, S. M. (2004). Neural systems supporting timing and chronometric counting: An FMRI study. Cognitive Brain Research, 21, 183–192. doi:10.1016/j.cogbrainres.2004.04.009

    Article  PubMed  Google Scholar 

  • Hinton, S. C., & Meck, W. H. (2004). Frontal-striatal circuitry activated by human peak-interval timing in the supra-seconds range. Cognitive Brain Research, 21, 171–182. doi:10.1016/j.cogbrainres.2004.08.005

    Article  PubMed  Google Scholar 

  • Hinton, S. C., & Rao, S. M. (2004). “One-thousand one. . . onethousand two . . .”: Chronometric counting violates the scalar property in interval timing. Psychonomic Bulletin & Review, 11, 24–30.

    Article  Google Scholar 

  • Hirsh, I. J., Monahan, C. B., Grant, K. W., & Singh, P. G. (1990). Studies in auditory timing: 1. Simple patterns. Perception & Psychophysics, 47, 215–226.

    Article  Google Scholar 

  • Hirsh, I. J., & Sherrick, C. E. (1961). Perceived order in different sense modalities. Journal of Experimental Psychology, 62, 423–432. doi:10.1037/h0045283

    Article  PubMed  Google Scholar 

  • Hodinott-Hill, I., Thilo, K. V., Cowey, A., & Walsh, V. (2002). Auditory chronostasis: Hanging on the telephone. Current Biology, 12, 1779–1781. doi:10.1016/S0960-9822(02)01219-8

    Article  PubMed  Google Scholar 

  • Hopson, J. W. (2003). General learning models: Timing without a clock. In W. H. Meck (Ed.), Functional and neural mechanisms of interval timing (pp. 23–60). Boca Raton, FL: CRC.

    Google Scholar 

  • Hornik, J. (1992). Time estimation and orientation mediated by transient mood. Journal of Socio-Economics, 21, 209–227. doi:10.1016/1053-5357(92)90010-5

    Article  Google Scholar 

  • Ivry, R. B., & Hazeltine, R. E. (1995). The perception and production of temporal intervals across a range of durations: Evidence for a common timing mechanism. Journal of Experimental Psychology: Human Perception & Performance, 21, 3–18. doi:10.1037/0096-1523.21.1.3

    Article  Google Scholar 

  • Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1, 136–152. doi:10.1162/jocn.1989.1.2.136

    Article  Google Scholar 

  • Ivry, R. B., Keele, S. W., & Diener, H. C. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental Brain Research, 73, 167–180.

    Article  Google Scholar 

  • Ivry, R. B., & Richardson, T. C. (2002). Temporal control and coordination: The multiple timer model. Brain & Cognition, 48, 117–132. doi:10.1006/brcg.2001.1308

    Article  Google Scholar 

  • Ivry, R. B., & Schlerf, J. (2008). Dedicated and intrinsic models of time perception. Trends in Cognitive Sciences, 12, 273–280. doi:10.1016/j.tics.2008.04.002

    Article  PubMed  Google Scholar 

  • Jahanshahi, M., Jones, C. R. G., Dirnberger, G., & Frith, C. D. (2006). The substantia nigra pars compacta and temporal processing. Journal of Neuroscience, 26, 12266–12273. doi:10.1523/JNEUROSCI.2540-06.2006

    Article  PubMed  Google Scholar 

  • James, W. (1890). The principles of psychology. New York: Holt.

    Book  Google Scholar 

  • Jantzen, K. J., Steinberg, F. L., & Kelso, J. A. S. (2005). Functional MRI reveals the existence of modality and coordination-dependent timing networks. NeuroImage, 25, 1031–1042.

    Article  PubMed  Google Scholar 

  • Johnston, A., Arnold, D. H., & Nishida, S. (2006). Spatially localized distortions of event time. Current Biology, 16, 472–479.

    Article  PubMed  Google Scholar 

  • Jones, B., & Huang, Y. L. (1982). Space-time dependencies in psychophysical judgment of extent and duration: Algebraic models of the tau and kappa effects. Psychological Bulletin, 91, 128–142. doi:10.1037/0033-2909.91.1.128

    Article  Google Scholar 

  • Jones, L. A., & Wearden, J. H. (2003). More is not necessarily better: Examining the nature of the temporal reference memory component in timing. Quarterly Journal of Experimental Psychology, 56B, 321–343. doi:10.1080/02724990244000287

    Google Scholar 

  • Jones, L. A., & Wearden, J. H. (2004). Double standards: Memory loading in temporal reference memory. Quarterly Journal of Experimental Psychology, 57B, 55–77. doi:10.1080/02724990344000088

    Google Scholar 

  • Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83, 323–355. doi:10.1037/0033-295X.83.5.323

    Article  PubMed  Google Scholar 

  • Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491. doi:10.1037/0033-295X.96.3.459

    Article  PubMed  Google Scholar 

  • Jones, M. R., Johnston, H. M., & Puente, J. (2006). Effects of auditory pattern structure on anticipatory and reactive attending. Cognitive Psychology, 53, 59–96. doi:10.1016/j.cogpsych.2006.01.003

    Article  PubMed  Google Scholar 

  • Jones, M. R., & McAuley, J. D. (2005). Time judgments in global temporal contexts. Perception & Psychophysics, 67, 398–417.

    Article  Google Scholar 

  • Jueptner, M., Rijntjes, M., Weiller, C., Faiss, J. H., Timmann, D., Mueller, S. P., & Diener, H. C. (1995). Localization of a cerebellar timing process using PET. Neurology, 45, 1540–1545.

    PubMed  Google Scholar 

  • Kanai, R., & Watanabe, M. (2006). Visual onset expands subjective time. Perception & Psychophysics, 68, 1113–1123.

    Article  Google Scholar 

  • Karmarkar, U. R., & Buonomano, D. V. (2007). Timing in the absence of clocks: Encoding time in neural network states. Neuron, 53, 427–438.

    Article  PubMed  Google Scholar 

  • Keele, S. W., & Ivry, R. B. (1991). Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. In A. Diamond (Ed.), The developmental and neural bases of higher cognitive functions (Annals of the New York Academy Sciences, Vol. 608, pp. 179–211). New York: New York Academy of Sciences.

    Google Scholar 

  • Keele, S. W., Pokorny, R. A., Corcos, D. M., & Ivry, R. (1985). Do perception and motor production share common timing mech-anisms: A correlational analysis. Acta Psychologica, 60, 173–191. doi:10.1016/0001-6918(85)90054-X

    Article  PubMed  Google Scholar 

  • Kellaris, J. J., & Kent, R. J. (1992). The influence of music on consumers’ temporal perceptions: Does time fly when you’re having fun? Journal of Consumer Psychology, 1, 365–376. doi:10.1016/S1057-7408(08)80060-5

    Article  Google Scholar 

  • Killeen, P. R., & Fetterman, J. G. (1988). A behavioral theory of timing. Psychological Review, 95, 274–295. doi:10.1037/0033-295X.95.2.274

    Article  PubMed  Google Scholar 

  • Killeen, P. R., Fetterman, J. G., & Bizo, L. A. (1997). Time’s cause. In C. M. Bradshaw & E. Szabadi (Eds.), Time and behavior: Psychological and neurobehavioral analyses (pp. 79–131). Amsterdam: Elsevier, North-Holland.

    Chapter  Google Scholar 

  • Killeen, P. R., & Taylor, T. J. (2000). How the propagation of error through stochastic counters affects time discrimination and other psychophysical judgments. Psychological Review, 107, 430–459.

    Article  PubMed  Google Scholar 

  • Killeen, P. R., & Weiss, N. A. (1987). Optimal timing and the Weber function. Psychological Review, 94, 455–468. doi:10.1037/0033-295X.107.3.430

    Article  PubMed  Google Scholar 

  • Klapproth, F. (2009). Single-modality memory mixing in temporal generalization: An effect due to instructional ambiguity. Neuro-Quantology, 7, 85–94.

    Google Scholar 

  • Koch, G., Oliveri, M., Carlesimo, G. A., & Caltagirone, C. (2002). Selective deficit of time perception in a patient with right prefrontal cortex lesion. Neurology, 59, 1658–1659.

    PubMed  Google Scholar 

  • Koch, G., Oliveri, M., Torriero, S., & Caltagirone, C. (2003). Underestimation of time perception after repetitive transcranial magnetic stimulation. Neurology, 60, 1844–1846.

    PubMed  Google Scholar 

  • Koch, G., Oliveri, M., Torriero, S., Salerno, S., Lo Gerfo, E. & Caltagirone, C. (2007). Repetitive TMS of cerebellum interferes with millisecond time processing. Experimental Brain Research, 179, 291–299.

    Article  Google Scholar 

  • Kudo, K., Miyazaki, M., Kimura, T., Yamanaka, K., Kadota, H., Hirashima, M., et al. (2004). Selective activation and deactivation of the human brain structures between speeded and precisely timed tapping responses to identical visual stimulus: An fMRI study. Neuro-Image, 22, 1291–1301.

    PubMed  Google Scholar 

  • Labelle, M.-A., Graf, P., Grondin, S., & Gagné-Roy, L. (2009). Time-related processes in time-based prospective memory and in time-interval production. European Journal of Cognitive Psychology, 21, 501–521. doi:10.1080/09541440802031000

    Article  Google Scholar 

  • Lapid, E., Ulrich, R., & Rammsayer, T. (2008). On estimating the difference limen in duration discrimination tasks: A comparison of the 2AFC and the reminder tasks. Perception & Psychophysics, 70, 291–305. doi:10.3758/PP.70.2.291

    Article  Google Scholar 

  • Lapid, E., Ulrich, R., & Rammsayer, T. (2009). Perceptual learning in auditory temporal discrimination: No evidence for a cross-modal transfer to the visual modality. Psychonomic Bulletin & Review, 16, 382–389.

    Article  Google Scholar 

  • Large, E. W. (2008). Resonating to musical rhythm: Theory and experiment. In S. Grondin (Ed.), Psychology of time (pp. 189–232). Bingley, U.K.: Emerald Group.

    Google Scholar 

  • Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How we track time varying events. Psychological Review, 106, 119–159.

    Article  Google Scholar 

  • Lavoie, P., & Grondin, S. (2004). Information processing limitations as revealed by temporal discrimination. Brain & Cognition, 54, 198–200. doi:10.1016/j.bandc.2004.02.039

    Article  Google Scholar 

  • Lee, K. H., Bhaker, R. S., Mysore, A., Parks, R. W., Birkett, P. B., & Woodruff, P. W. (2009). Time perception and its neuropsychological correlates in patients with schizophrenia and in healthy volunteers. Psychiatry Research, 166, 174–183.

    Article  PubMed  Google Scholar 

  • Lee, K. H., Eagleston, P. N., Brown, W. H., Gregory, A.N., Barker, A. T., & Woodruff, P. W. R. (2007). The role of the cerebellum in subsecond time perception: Evidence from repetitive transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 19, 147–157. doi:10.1162/jocn.2007.19.1.147

    Article  PubMed  Google Scholar 

  • Lejeune, H., & Wearden, J. H. (2009). Vierordt’s The experimental study of the time sense (1868) and its legacy. European Journal of Cognitive Psychology, 21, 941–960.

    Article  Google Scholar 

  • Lewis, P. A., & Miall, R. C. (2003a). Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia, 41, 1583–1592. doi:10.1016/S0028-3932(03)00118-0

    Article  PubMed  Google Scholar 

  • Lewis, P. A., & Miall, R. C. (2003b). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13, 250–255. doi:10.1016/S0959-4388(03)00036-9

    Article  PubMed  Google Scholar 

  • Lewis, P. A., & Miall, R. C. (2006). A right hemispheric prefrontal system for cognitive time measurement. Behavioural Processes, 71, 226–234. doi:10.1016/j.beproc.2005.12.009

    Article  PubMed  Google Scholar 

  • Lewis, P. A., & Miall, R. C. (2009). The precision of temporal judgement: Milliseconds, many minutes, and beyond. Philosophical Transactions of the Royal Society B, 364, 1897–1905.

    Article  Google Scholar 

  • Lhamon, W. T., & Goldstone, S. (1974). Studies on auditory-visual differences in human time judgment: II. More transmitted information with sounds than lights. Perceptual & Motor Skills, 39, 295–307.

    Article  Google Scholar 

  • Livesey, A. C., Wall, M. B., & Smith, A. T. (2007). Time perception: Manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia, 45, 321–331. doi:10.1016/j.neuropsychologia.2006.06.033

    Article  PubMed  Google Scholar 

  • Lobo, F. S. N. (2008). Nature of time and causality in physics. In S. Grondin (Ed.), Psychology of time (pp. 395–422). Bingley, U.K.: Emerald Group.

    Google Scholar 

  • Macar, F., Anton, J.-L., Bonnet, M., & Vidal, F. (2004). Timing functions of the supplementary motor area: An event-related fMRI study. Cognitive Brain Research, 21, 206–215. doi:10.1016/j.cogbrainres.2004.01.005

    Article  PubMed  Google Scholar 

  • Macar, F., Coull, J., & Vidal, F. (2006). The supplementary motor area in motor and perceptual time processing: fMRI studies. Cognitive Processing, 7, 89–94. doi:10.1007/s10339-005-0025-7

    Article  PubMed  Google Scholar 

  • Macar, F., Grondin, S., & Casini, L. (1994). Controlled attention sharing influences time estimation. Memory & Cognition, 22, 673–686.

    Article  Google Scholar 

  • Macar, F., Lejeune, H., Bonnet, M., Ferrara, A., Pouthas, V., Vidal, F., & Maquet, P. (2002). Activation of the supplementary motor area and of attentional networks during temporal processing. Experimental Brain Research, 142, 475–485.

    Article  Google Scholar 

  • Macar, F., & Vidal, F. (2004). Event-related potentials as indices of time processing: A review. Journal of Psychophysiology, 18, 89–104. doi:10.1027/0269-8803.18.23.89

    Article  Google Scholar 

  • Macar, F., & Vidal, F. (2009). Timing processes: An outline of behavioural and neural indices not systematically considered in timing models. Canadian Journal of Experimental Psychology, 63, 227–239. doi:10.1037/a0014457

    Article  PubMed  Google Scholar 

  • Macar, F., Vidal, F., & Casini, L. (1999). The supplementary motor area in motor and sensory timing: Evidence from slow brain potential changes. Experimental Brain Research, 135, 271–280.

    Article  Google Scholar 

  • Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s guide. New York: Cambridge University Press.

    Google Scholar 

  • Madison, G. (2001). Variability in isochronous tapping: Higher order dependencies as a function of intertap interval. Journal of Experimental Psychology: Human Perception & Performance, 27, 411–422. doi:10.1037/0096-1523.27.2.411

    Article  Google Scholar 

  • Marzi, C. A. (2004). Two brains, one clock. Trends in Cognitive Sciences, 8, 1–3. doi:10.1016/j.tics.2003.10.015

    Article  PubMed  Google Scholar 

  • Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cognitive Brain Research, 21, 139–170. doi:10.1016/j.cogbrainres.2004.06.012

    Article  PubMed  Google Scholar 

  • Matell, M. S., Meck, W. H., & Nicolelis, M. A. L. (2003). Integration of behavior and timing: Anatomically separate system or distributed processing? In W. H. Meck (Ed.), Functional and neural mechanisms of interval timing (pp. 485–514). Boca Raton, FL: CRC.

    Google Scholar 

  • Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27, 307–340. doi:10.1146/annurev.neuro.27.070203.144247

    Article  PubMed  Google Scholar 

  • McAuley, J. D., & Jones, M. R. (2003). Modeling effects of rhythmic context on perceived duration: A comparison of interval and entrainment approaches to short-interval timing. Journal of Experimental Psychology: Human Perception & Performance, 29, 1102–1125. doi:10.1037/0096-1523.29.6.1102

    Article  Google Scholar 

  • McAuley, J. D., Jones, M. R., Holub, S., Johnston, H. M., & Miller, N. S. (2006). The time of our lives: Life span development of timing and event tracking. Journal of Experimental Psychology: General, 135, 348–367. doi:10.1037/0096-3445.135.3.348

    Article  Google Scholar 

  • McAuley, J. D., & Miller, N. S. (2007). Picking up the pace: Effects of global temporal context on sensitivity to the tempo of auditory sequences. Perception & Psychophysics, 69, 709–718.

    Article  Google Scholar 

  • McCormack, T., Wearden, J., Smith, M., & Brown, G. (2005). Epi sodic temporal generalization: A developmental study. Quarterly Journal of Experimental Psychology, 58A, 693–704. doi:10.1080/02724980443000250

    Google Scholar 

  • Meck, W. H. (1984). Attentional bias between modalities: Effect on the internal clock, memory, and decision stages used in animal time discrimination. In J. Gibbon & L. G. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 528–541). New York: New York Academy of Sciences.

    Google Scholar 

  • Meck, W. H. (ED.) (2003). Functional and neural mechanisms of internal timing. Boca Raton, FL: CRC.

    Google Scholar 

  • Meck, W. H. (ED.) (2004). Neuroimaging of interval timing [Special issue]. Cognitive Brain Research, 21(2). doi:10.1016/j.cogbrainres.2004.07.010

  • Meck, W. H. (ED.) (2005). Neuropsychology of timing and time perception [Special issue]. Brain & Cognition, 58(1). doi:10.1016/j.bandc.2004.09.004

  • Meck, W. H., & Benson, A. M. (2002). Dissecting the brain’s internal clock: How frontal-striatal circuitry keeps time and shifts attention. Brain & Cognition, 48, 195–211. doi:10.1006/brcg.2001.1313

    Article  Google Scholar 

  • Miller, N., & McAuley, J. D. (2005). Tempo sensitivity in isochronous tone sequences: The multiple-look model revisited. Perception & Psychophysics, 67, 1150–1160.

    Article  Google Scholar 

  • Mitsudo, T., Nakajima, Y., Remijn, G. B., Takeichi, H., Goto, Y., & Tobimatsu, S. (2009). Electrophysiological evidence of auditory temporal perception related to the assimilation between two neighboring time intervals. NeuroQuantology, 7, 114–127.

    Google Scholar 

  • Monfort, V., & Pouthas, V. (2003). Effects of working memory demands on frontal slow waves in time-interval reproduction tasks in humans. Neuroscience Letters, 343, 195–199.

    PubMed  Google Scholar 

  • Morrone, M. C., Ross, J., & Burr, D. (2005). Saccadic eye movements cause compression of time as well as space. Nature Neuroscience, 8, 950–954. doi:10.1038/nn1488

    PubMed  Google Scholar 

  • Nakajima, Y., ten Hoopen, G., Sasaki, T., Yamamoto, K., Kado ta, M., Simons, M., & Suetomi, D. (2004). Time-shrinking: The process of unilateral temporal assimilation. Perception, 33, 1061–1079. doi:10.1068/p5061

    Article  PubMed  Google Scholar 

  • N’Diaye, K., Ragot, R., Garnero, L., & Pouthas, V. (2004). What is common to brain activity evoked by the perception of visual and auditory filled durations? A study with MEG and EEG corecordings. Cognitive Brain Research, 21, 250–268. doi:10.1016/j.cogbrainres.2004.04.006

    Article  PubMed  Google Scholar 

  • Nenadic, I., Gaser, C., Volz, H. P., Rammsayer, T., Hager, F., & Sauer, H. (2003). Processing of temporal information and the basal ganglia: New evidence from fMRI. Experimental Brain Research, 148, 238–246.

    Google Scholar 

  • Nichelli, P., Always, D., & Grafman, J. (1996). Perceptual timing in cerebellar degeneration. Neuropsychologia, 34, 863–871. doi:10.1016/0028-3932(96)00001-2

    Article  PubMed  Google Scholar 

  • Ogden, R. S., Wearden, J. H., & Jones, L. A. (2008). Double standards: Memory loading in temporal reference memory. Journal of Experimental Psychology: Human Perception & Performance, 34, 1524–1544. doi:10.1080/02724990344000088

    Article  Google Scholar 

  • Ono, F., & Kitazawa, S. (2010). Shortening of subjective tone intervals followed by repetitive tone stimuli. Attention, Perception, & Psychophysics, 72, 492–500.

    Article  Google Scholar 

  • Ornstein, R. (1969). On the experience of time. New York: Penguin.

    Google Scholar 

  • Pariyadath, V., & Eagleman, D. (2007). The effect of predictability on subjective duration. PLoS ONE, 11, e1264. doi:10.1371/journal.pone.0001264

    Article  Google Scholar 

  • Penney, T. B., Gibbon, J., & Meck, W. H. (2000). Differential effects of auditory and visual signals on clock speed and temporal memory. Journal of Experimental Psychology: Human Perception & Performance, 26, 1770–1787. doi:10.1037/0096-1523.26.6.1770

    Article  Google Scholar 

  • Penney, T. B., Gibbon, J., & Meck, W. H. (2008). Categorical scaling of duration bisection in pigeons (Columba livia), mice (Mus musculus), and humans (Homo sapiens). Psychological Science, 19, 1103–1109. doi:10.1111/j.1467-9280.2008.02210.x

    Article  PubMed  Google Scholar 

  • Penney, T. B., & Vaitilingam, L. (2008). Imaging time. In S. Grondin (Ed.), Psychology of time (pp. 261–294). Bingley, U.K.: Emerald Group.

    Google Scholar 

  • Perret-Clermont, A.-N. (ED.) (2005). Thinking time. Göttingen: Hogrefe & Huber.

    Google Scholar 

  • Pfeuty, M., Ragot, R., & Pouthas, V. (2003a). Processes involved in tempo perception: A CNV analysis. Psychophysiology, 40, 69–76. doi:10.1111/1469-8986.00008

    Article  PubMed  Google Scholar 

  • Pfeuty, M., Ragot, R., & Pouthas, V. (2003b). When time is up: CNV time course differentiates the roles of the hemispheres in the discrimination of short tone durations. Experimental Brain Research, 151, 372–379.

    Article  Google Scholar 

  • Pfeuty, M., Ragot, R., & Pouthas, V. (2008). Brain activity during interval timing depends on sensory structure. Brain Research, 1024, 112–117. doi:10.1016/j.brainres.2008.01.022

    Article  Google Scholar 

  • Phillips, D. P., & Hall, S. E. (2002). Auditory temporal gap detection for noise markers with partially overlapping and non-overlapping spectra. Hearing Research, 174, 133–141.

    Article  PubMed  Google Scholar 

  • Pöppel, E. (1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1, 56–61. doi:10.1016/S1364-6613(97)01008-5

    Article  PubMed  Google Scholar 

  • Pöppel, E. (2004). Lost in time: A historical frame, elementary processing units and the 3-second window. Acta Neurobiologiae Experimentalis, 64, 295–301.

    PubMed  Google Scholar 

  • Pouthas, V., Garnero, L., Ferrandez, A.-M., & Renault, B. (2000). ERPs and PET analysis of time perception: Spatial and temporal brain mapping during visual discrimination tasks. Human Brain Mapping, 10, 49–60. doi:10.1002/(SICI)1097-0193(200006)10:2<49::AID-HBM10>3.0.CO;2-8

    Article  PubMed  Google Scholar 

  • Pouthas, V., George, N., Poline, J.-B., Pfeuty, M., VandeMoorteele, P.-F., Hugueville, L., et al. (2005). Neural network involved in time perception: An fMRI study comparing long and short interval estimation. Human Brain Mapping, 25, 433–441. doi:10.1002/hbm.20126

    Article  PubMed  Google Scholar 

  • Predebon, J. (1996). The effects of active and passive processing of interval events on prospective and retrospective time estimates. Acta Psychologica, 94, 41–58. doi:10.1016/0001-6918(95)00044-5

    Article  Google Scholar 

  • Quené, H. (2007). On the just noticeable difference for tempo in speech. Journal of Phonetics, 35, 353–362. doi:10.1016/j.wocn.2006.09.001

    Article  Google Scholar 

  • Rammsayer, T. H. (2008). Neuropharmacological approaches to human timing. In S. Grondin (Ed.), Psychology of time (pp. 295–320). Bingley, U.K.: Emerald Group.

    Google Scholar 

  • Rammsayer, T. H., & Lima, S. D. (1991). Duration discrimination of filled and empty auditory intervals: Cognitive and perceptual factors. Perception & Psychophysics, 50, 565–574.

    Article  Google Scholar 

  • Rammsayer, T. [H.], & Ulrich, R. (2001). Counting models of temporal discrimination. Psychonomic Bulletin & Review, 8, 270–277.

    Article  Google Scholar 

  • Rammsayer, T. [H.], & Ulrich, R. (2005). No evidence for qualitative difference in the processing of short and long temporal intervals. Acta Psychologica, 120, 141–171.

    Article  PubMed  Google Scholar 

  • Rao, S. M., Mayer, A. R., & Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience, 4, 317–323. doi:10.1038/85191

    Article  PubMed  Google Scholar 

  • Rattat, A.-C., & Droit-Volet, S. (2005). The long-term retention of time: A developmental study. Quarterly Journal of Experimental Psychology, 58B, 163–176.

    Google Scholar 

  • Rattat, A.-C., & Droit-Volet, S. (2007). Implicit long-term memory for duration in young children. European Journal of Cognitive Psychology, 19, 271–285. doi:10.1080/09541440600834647

    Article  Google Scholar 

  • Rau, P.-L. P., Shu-Yun, P., & Chin-Chow, Y. (2006). Time distortion for expert and novice online game players. CyberPsychology & Behavior, 9, 396–403. doi:10.1089/cpb.2006.9.396

    Article  Google Scholar 

  • Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin & Review, 12, 969–992.

    Article  Google Scholar 

  • Roberts, W. A. (2008). Can animals cognitively travel to the past and future? In S. Grondin (Ed.), Psychology of time (pp. 322–344). Bingley, U.K.: Emerald Group.

    Google Scholar 

  • Robertson, S., Zelaznik, H., Lantero, D., Gadacz, K., Spencer, R., Doffin, J., & Schneidt, T. (1999). Correlations for timing consistency among tapping and drawing tasks: Evidence against a single timing process for motor control. Journal of Experimental Psychology: Human Perception & Performance, 25, 1316–1330. doi:10.1037/0096-1523.25.5.1316

    Article  Google Scholar 

  • Roeckelein, J. E. (2000). The concept of time in psychology: A resource book and annotated bibliography. Westport, CT: Greenwood.

    Google Scholar 

  • Roeckelein, J. E. (2008). History of conceptions and accounts of time and early time perception research. In S. Grondin (Ed.), Psychology of time (pp. 1–50). Bingley, U.K.: Emerald Group.

    Google Scholar 

  • Rosenbaum, D. A. (2002). Time, space, and short-term memory. Brain & Cognition, 48, 52–65. doi:10.1006/brcg.2001.1303

    Article  Google Scholar 

  • Roussel, M.-E., Grondin, S., & Killeen, P. (2009). Spatial effects on temporal categorization. Perception, 38, 748–762.

    Article  PubMed  Google Scholar 

  • Roy, M. M., & Christenfeld, N. J. S. (2008). Effect of task length on remembered and predicted duration. Psychonomic Bulletin & Review, 15, 202–207. doi:10.3758/PBR.15.1.202

    Article  Google Scholar 

  • Roy, M. M., Christenfeld, N. J. S., & McKenzie, C. R. M. (2005). Underestimation of future duration: Memory incorrectly used or memory bias? Psychological Bulletin, 131, 738–756. doi:10.1037/0033-2909.131.5.738

    Article  PubMed  Google Scholar 

  • Rubia, K. (2006). The neural corrolates of timing functions. In J. Glicksohn & M. S. Myslobodsky (Eds.), Timing the future: The case for a time-based prospective memory (pp. 213–238). River Edge, NJ: World Scientific Publishing.

    Chapter  Google Scholar 

  • Sarrazin, J.-C., Giraudo, M.-D., Pailhous, J., & Bootsma, R. J. (2004). Dynamics of balancing space and time in memory: Tau and kappa effects revisited. Journal of Experimental Psychology: Human Perception & Performance, 30, 411–430. doi:10.1037/0096-1523.30.3.411

    Article  Google Scholar 

  • Sarrazin, J.-C., Giraudo, M.-D., & Pittenger, J. B. (2007). Tau and kappa effects in physical space: The case of audition. Psychological Research, 71, 201–218. doi:10.1007/s00426-005-0019-1

    Article  PubMed  Google Scholar 

  • Schöner, G. (2002). Timing, clocks, and dynamical systems. Brain & Cognition, 48, 31–51. doi:10.1006/brcg.2001.1302

    Article  Google Scholar 

  • Smith, A., Taylor, E., Lidzba, K., & Rubia, K. (2003). A right hemispheric frontocerebellar network for time discrimination of several hundreds of milliseconds. NeuroImage, 20, 344–350.

    Article  PubMed  Google Scholar 

  • Smith, J. G., Harper, D. N., Gittings, D., & Abernethy, D. (2007). The effect of Parkinson’s disease on time estimation as a function of stimulus duration range and modality. Brain & Cognition, 64, 130–143. doi:10.1016/j.bandc.2007.01.005

    Article  Google Scholar 

  • Spencer, R. M. C., & Zelaznik, H. N. (2003). Weber (slope) analyses of timing variability in tapping and drawing tasks. Journal of Motor Behavior, 35, 371–382.

    Article  PubMed  Google Scholar 

  • Spencer, R. M. C., Zelaznik, H. N., Diedrichsen, J., & Ivry, R. B. (2003). Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science, 300, 1437–1439.

    Article  PubMed  Google Scholar 

  • Staddon, J. E. R., & Higa, J. J. (1996). Multiple time scales in simple habituation. Psychological Review, 103, 720–733. doi:10.1037/0033-295X.103.4.720

    Article  PubMed  Google Scholar 

  • Staddon, J. E. R., & Higa, J. J. (1999). Time and memory: Towards a pacemaker-free theory of interval timing. Journal of the Experimental Analysis of Behavior, 71, 215–251. doi:10.1901/jeab.1999.71-215

    Article  PubMed  Google Scholar 

  • Strathman, A., & Joireman, J. (Eds.) (2005). Understanding behavior in the context of time. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Szelag, E., & Wittmann, M. (EDS.) (2004). Time, cognition, thinking [Special issue]. Acta Neurobiologiae Experimentalis, 64(3).

  • Tallal, P. (2003). Language learning disabilities: Integrating research approaches. Current Directions in Psychological Science, 12, 206–211. doi:10.1046/j.0963-7214.2003.01263.x

    Article  Google Scholar 

  • Tallal, P. (2004). Improving language and literacy is a matter of time. Nature Reviews Neuroscience, 5, 721–728. doi:10.1038/nrn1499

    Article  PubMed  Google Scholar 

  • Tarlaci, S. (ED.) (2009). Time, timing, and the brain [Special issue]. NeuroQuantology, 7.

  • ten Hoopen, G., Miyauchi, R., & Nakajima, Y. (2008). Time-based illusions in the auditory mode. In S. Grondin (Ed.), Psychology of time (pp. 139–188). Bingley, U.K.: Emerald Group.

    Google Scholar 

  • Thaut, M. H. (2005). Rhythm, music and the brain: Scientific foundations and clinical applications. New York: Taylor & Francis.

    Google Scholar 

  • Thomas, K. E., Handley, S. J., & Newstead, S. E. (2007). The role of prior task experience in temporal misestimating. Quarterly Journal of Experimental Psychology, 60, 230–240.

    Article  Google Scholar 

  • Tobin, S., Bisson, N., & Grondin, S. (2010). An ecological approach to prospective and retrospective timing of long durations: A study involving gamers. PLoS ONE, 5(2), e9271. doi:10.1371/journal.pone.0009271

    Article  PubMed  Google Scholar 

  • Tobin, S., & Grondin, S. (2009). Video games and the perception of very long durations by adolescents. Computers in Human Behavior, 25, 554–559. doi:10.1016/j.chb.2008.12.002

    Article  Google Scholar 

  • Toplak, M. E., Dockstader, C., & Tannock, R. (2006). Temporal information processing in ADHD: Findings to date and new methods. Journal of Neuroscience Methods, 151, 15–26.

    Article  PubMed  Google Scholar 

  • Tracy, J. I., Faro, S. H., Mohamed, F. B., Pinsk, M., & Pinus, A. (2000). Functional localization of a “time keeper” function separate from attentional resources and task strategy. NeuroImage, 11, 228–242.

    Article  PubMed  Google Scholar 

  • Tregellas, J. R., Davalos, D. B., & Rojas, D. C. (2006). Effect of task difficulty on the functional anatomy of temporal processing. Neuro-Image, 32, 307–315.

    PubMed  Google Scholar 

  • Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the “internal clock.” Psychological Monographs, 77(Whole no. 576).

  • Treisman, M., Faulkner, A., Naish, P. L. N., & Brogan, D. (1990). The internal clock: Evidence for a temporal oscillation underlying time perception with some estimates of its characteristic frequency. Perception, 19, 705–743.

    Article  PubMed  Google Scholar 

  • Tse, C.-Y., & Penney, T. B. (2006). Preattentive timing of empty intervals is from marker offset to onset. Psychophysiology, 43, 172–179. doi:10.1111/j.1469-8986.2006.389.x

    Article  PubMed  Google Scholar 

  • Tse, P. U., Intriligator, J., Rivest, J., & Cavanagh, P. (2004). Attention and the subjective expansion of time. Perception & Psychophysics, 66, 1171–1189.

    Article  Google Scholar 

  • Tulving, E. (2002). Chronesthesia: Conscious awareness of subjective time. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 311–325). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Ulrich, R., Nitschke, J., & Rammsayer, T. (2006). Crossmodal temporal discrimination: Assessing the predictions of a general pacemaker- counter model. Perception & Psychophysics, 68, 1140–1152.

    Article  Google Scholar 

  • Vicario, G. B. (2005). Il tempo. Saggio di psicologia sperimentale [On time: An essay in experimental psychology]. Bologna, Italy: Il Mulino.

    Google Scholar 

  • Volz, H.-P., Nenadic, I., Gaser, C., Rammsayer, T., Hager, F., & Sauer, H. (2001). Time estimation in schizophrenia: An fMRI study at adjusted levels of difficulty. NeuroReport, 12, 313–316. doi:10.1097/00001756-200102120-00026

    Article  PubMed  Google Scholar 

  • Wackermann, J. (2007). Inner and outer horizons of time experience. Spanish Journal of Psychology, 10, 20–32.

    PubMed  Google Scholar 

  • Wackermann, J., & Ehm, W. (2006). The dual klepsydra model of internal time representation and time reproduction. Journal of Theoretical Biology, 239, 482–493. doi:10.1016/j.jtbi.2005.08.024

    Article  PubMed  Google Scholar 

  • Walker, J. T., & Scott, K. J. (1981). Auditory-visual conflicts in the perceived duration of lights, tones, and gaps. Journal of Experimental Psychology: Human Perception & Performance, 7, 1327–1339. doi:10.1037/0096-1523.7.6.1327

    Article  Google Scholar 

  • Wallace, M., & Rabin, A. I. (1960). Temporal experience. Psychological Bulletin, 57, 213–235. doi:10.1037/h0041410

    Article  PubMed  Google Scholar 

  • Wearden, J. H. (1992). Temporal generalization in humans. Journal of Experimental Psychology: Animal Behavior Processes, 18, 134–144. doi:10.1037/0097-7403.18.2.134

    Article  Google Scholar 

  • Wearden, J. H. (2003). Applying the scalar timing model to human time psychology: Progress and challenges. In H. Helfrich (Ed.), Time and mind II (pp. 21–39). Göttingen: Hogrefe & Huber.

    Google Scholar 

  • Wearden, J. H. (2004). Decision processes in models of timing. Acta Neurobiologiae Experimentalis, 64, 303–317.

    PubMed  Google Scholar 

  • Wearden, J. H., Edwards, H., Fakhri, M., & Percival, A. (1998). Why “sounds are judged longer than lights”: Application of a model of the internal clock in humans. Quarterly Journal of Experimental Psychology, 51B, 97–120.

    Google Scholar 

  • Wearden, J. H., & Lejeune, H. (2008). Scalar properties in human timing: Conformity and violations. Quarterly Journal of Experimental Psychology, 61, 569–587. doi:10.1080/17470210701282576

    Article  Google Scholar 

  • Wearden, J. H., Norton, R., Martin, S., & Montford-Bebb, O. (2007). Internal clock processes and the filled-duration illusion. Journal of Experimental Psychology: Human Perception & Performance, 33, 716–729. doi:10.1037/0096-1523.33.3.716

    Article  Google Scholar 

  • Wearden, J. H., Smith-Spark, J. H., Cousins, R., Edelstyn, N. M. J., Cody, F. W. J., O’Boyle, D. J. (2008). Stimulus timing by people with Parkinson’s disease. Brain & Cognition, 67, 264–279. doi:10.1016/j.bandc.2008.01.010

    Article  Google Scholar 

  • Wing, A. M. (2002). Voluntary timing and brain function: An information processing approach. Brain & Cognition, 48, 7–30. doi:10.1006/brcg.2001.1301

    Article  Google Scholar 

  • Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception & Psychophysics, 14, 5–12.

    Article  Google Scholar 

  • Wittmann, M., & van Wassenhove, V. (EDS.) (2009). The experience of time: Neural mechanisms and the interplay of emotion, cognition and embodiment [Special issue]. Philosophical Transactions of the Royal Society B, 364(1525). doi:10.1098/rstb.2009.0025

  • Woodrow, H. (1934). The temporal indifference interval determined by the method of average error. Journal of Experimental Psychology, 17, 167–188.

    Article  Google Scholar 

  • Yarrow, K., Haggard, P., Heal, R., Brown, P., & Rothwell, J. C. (2001). Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature, 414, 302–305. doi:10.1038/35104551

    Article  PubMed  Google Scholar 

  • Yarrow, K., & Rothwell, J. C. E. (2003). Manual chronostasis: Tactile perception precedes physical contact. Current Biology, 13, 1334–1339. doi:10.1016/S0960-9822(03)00413-5

    Article  Google Scholar 

  • Zakay, D. (1993). Time estimation methods—Do they influence prospective duration estimates? Perception, 22, 91–101. doi:10.1068/p220091

    Article  PubMed  Google Scholar 

  • Zakay, D. (1998). Attention allocation policy influences prospective timing. Psychonomic Bulletin & Review, 5, 114–118.

    Article  Google Scholar 

  • Zakay, D., & Block, R. A. (1997). Temporal cognition. Current Directions in Psychological Science, 6, 12–16. doi:10.1111/1467-8721.ep11512604

    Article  Google Scholar 

  • Zakay, D., & Block, R. A. (2004). Prospective and retrospective duration judgments: An executive-control perspective. Acta Neurobiologiae Experimentalis, 64, 319–328.

    PubMed  Google Scholar 

  • Zeiler, M. D. (1998). On sundials, springs, and atoms. Behavioural Processes, 44, 89–99. doi:10.1016/S0376-6357(98)00042-4

    Article  Google Scholar 

  • Zeiler, M. D. (1999). Time without clocks. Journal of the Experimental Analysis of Behavior, 71, 288–291. doi:10.1901/jeab.1999.71-288

    Article  PubMed  Google Scholar 

  • Zelaznik, H. N., Spencer, R. M. [C.], & Doffin, J. G. (2000). Temporal precision in tapping and circle drawing movements at preferred rates is not correlated: Further evidence against timing as a general purpose ability. Journal of Motor Behavior, 32, 193–199.

    Article  PubMed  Google Scholar 

  • Zelaznik, H. N., Spencer, R. M. C., & Ivry, R. B. (2002). Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. Journal of Experimental Psychology: Human Perception & Performance, 28, 575–588. doi:10.1037/0096-1523.28.3.575

    Article  Google Scholar 

  • Zelaznik, H. N., Spencer, R. M. C., & Ivry, R. B. (2008). Behavioral analysis of human movement timing. In S. Grondin (Ed.), Psychology of time (pp. 233–260). Bingley, U.K.: Emerald Group.

    Google Scholar 

  • Zimbardo, P., & Boyd, J. (1999). Putting time in perspective: A valid, reliable individual-differences metric. Journal of Personality & Social Psychology, 77, 1271–1288. doi:10.1037/0022-3514.77.6.1271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. École de psychologie, Université Laval, 2325 rue des Bibliothèques, G1V 0A6, Québec, QC, Canada

    Simon Grondin

Authors
  1. Simon Grondin
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Simon Grondin.

Additional information

The present research was made possible by a research grant awarded by the Natural Sciences and Engineering Council of Canada (NSERC).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grondin, S. Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics 72, 561–582 (2010). https://doi.org/10.3758/APP.72.3.561

Download citation

  • Received: 01 June 2009

  • Accepted: 08 November 2009

  • Issue Date: April 2010

  • DOI: https://doi.org/10.3758/APP.72.3.561

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Experimental Psychology
  • Supplementary Motor Area
  • Time Perception
  • Contingent Negative Variation
  • Internal Clock
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature