Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Attention, Perception, & Psychophysics
  3. Article

Where perception meets memory: A review of repetition priming in visual search tasks

  • Tutorial Review
  • Published: January 2010
  • Volume 72, pages 5–18, (2010)
  • Cite this article
Download PDF
Attention, Perception, & Psychophysics Aims and scope Submit manuscript
Where perception meets memory: A review of repetition priming in visual search tasks
Download PDF
  • Árni Kristjánsson1 &
  • Gianluca Campana2 
  • 7183 Accesses

  • 305 Citations

  • 4 Altmetric

  • Explore all metrics

Abstract

What we have recently seen and attended to strongly influences how we subsequently allocate visual attention. A clear example is how repeated presentation of an object’s features or location in visual search tasks facilitates subsequent detection or identification of that item, a phenomenon known as priming. Here, we review a large body of results from priming studies that suggest that a short-term implicit memory system guides our attention to recently viewed items. The nature of this memory system and the processing level at which visual priming occurs are still debated. Priming might be due to activity modulations of low-level areas coding simple stimulus characteristics or to higher level episodic memory representations of whole objects or visual scenes. Indeed, recent evidence indicates that only minor changes to the stimuli used in priming studies may alter the processing level at which priming occurs. We also review recent behavioral, neuropsychological, and neurophysiological evidence that indicates that the priming patterns are reflected in activity modulations at multiple sites along the visual pathways. We furthermore suggest that studies of priming in visual search may potentially shed important light on the nature of cortical visual representations. Our conclusion is that priming occurs at many different levels of the perceptual hierarchy, reflecting activity modulations ranging from lower to higher levels, depending on the stimulus, task, and context—in fact, the neural loci that are involved in the analysis of the stimuli for which priming effects are seen.

Article PDF

Download to read the full article text

Similar content being viewed by others

The long and the short of priming in visual search

Article Open access 02 April 2015

Wouter Kruijne & Martijn Meeter

Testing the role of response repetition in spatial priming in visual search

Article 11 June 2018

Matthew D. Hilchey, Andrew B. Leber & Jay Pratt

Implicit short- and long-term memory direct our gaze in visual search

Article Open access 11 January 2016

Wouter Kruijne & Martijn Meeter

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Ásgeirsson, Á. G., & Kristjánsson, Á. (2008). Episodic retrieval accounts of priming in visual search explain only a limited subset of findings on priming. Perception, 37(Suppl.), 93–94.

    Google Scholar 

  • Bartels, A., & Zeki, S. (2000). The architecture of the color centre in the human visual brain: New results and a review. European Journal of Neuroscience, 12, 172–193.

    PubMed  Google Scholar 

  • Becker, S. I. (2008a). Can intertrial effects of features and dimensions be explained by a single theory? Journal of Experimental Psychology: Human Perception & Performance, 34, 1414–1440.

    Google Scholar 

  • Becker, S. I. (2008b). The mechanism of priming: Episodic retrieval or priming of pop-out? Acta Psychologica, 127, 324–339.

    PubMed  Google Scholar 

  • Becker, S. I. (2008c). The stage of priming: Are intertrial repetition effects attentional or decisional? Vision Research, 48, 664–684.

    PubMed  Google Scholar 

  • Becker, S. I., & Horstmann, G. (2009). A feature-weighting account of priming in conjunction search. Attention, Perception, & Psychophysics, 71, 258–272.

    Google Scholar 

  • Berry, C. J., Shanks, D. R., & Henson, R. N. A. (2008). A unitary signal-detection model of implicit and explicit memory. Trends in Cognitive Sciences, 12, 367–373.

    PubMed  Google Scholar 

  • Bichot, N. P., & Schall, J. D. (1999). Effects of similarity and history on neural mechanisms of visual selection. Nature Neuroscience, 2, 549–554.

    PubMed  Google Scholar 

  • Bichot, N. P., & Schall, J. D. (2002). Priming in macaque frontal cortex during pop-out visual search: Feature-based facilitation and location-based inhibition of return. Journal of Neuroscience, 22, 4675–4685.

    PubMed  Google Scholar 

  • Bravo, M. J., & Nakayama, K. (1992). The role of attention in different visual-search tasks. Perception & Psychophysics, 51, 465–472.

    Google Scholar 

  • Brooks, D. N., & Baddeley, A. D. (1976). What can amnesic patients learn? Neuropsychologia, 14, 111–122.

    PubMed  Google Scholar 

  • Buckner, R. L., Goodman, J., Burock, M., Rotte, M., Koutstaal, W., Schacter, D. L., et al. (1998). Functional-anatomic correlates of object priming in humans revealed by rapid presentation recognition event related fMRI. Neuron, 20, 285–296.

    PubMed  Google Scholar 

  • Campana, G., & Casco, C. (2009). Repetition effects of features and spatial position: Evidence for dissociable mechanisms. Spatial Vision, 22, 325–338.

    PubMed  Google Scholar 

  • Campana, G., Cowey, A., Casco, C., Oudsen, I., & Walsh, V. (2007). Left frontal eye field remembers “where” but not “what.” Neuropsychologia, 45, 2340–2345.

    PubMed  Google Scholar 

  • Campana, G., Cowey, A., & Walsh, V. (2002). Priming of motion direction and area V5/MT: A test of perceptual memory. Cerebral Cortex, 12, 663–669.

    PubMed  Google Scholar 

  • Campana, G., Cowey, A., & Walsh, V. (2006). Visual area V5/MT remembers “what” but not “where.” Cerebral Cortex, 16, 1766–1770.

    PubMed  Google Scholar 

  • Campana, G., Pavan, A., & Casco, C. (2008). Priming of first- and second-order motion: Mechanisms and neural substrates. Neuropsychologia, 46, 393–398.

    PubMed  Google Scholar 

  • Cavanagh, P., & Mather, G. (1989). Motion: The long and short of it. Spatial Vision, 4, 103–129.

    PubMed  Google Scholar 

  • Chubb, C., & Sperling, G. (1988). Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception. Journal of the Optical Society of America A, 5, 1986–2007.

    Google Scholar 

  • Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71.

    PubMed  Google Scholar 

  • Cohen, A., & Magen, H. (1999). Intra- and cross-dimensional visual search for single-feature targets. Perception & Psychophysics, 61, 291–307.

    Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.

    PubMed  Google Scholar 

  • Duncan, J. (1985). Visual search and visual attention. In M. I. Posner & O. S. M. Marin (Eds.), Attention and performance XI (pp. 85–106). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Edelman, J., Kristjánsson, Á., & Nakayama, K. (2007). The influence of object-relative visuomotor set on express saccades. Journal of Vision, 7, Art. 12, 1–13.

    Google Scholar 

  • Eichenbaum, H. (1997). Declarative memory: Insights from cognitive neurobiology. Annual Review of Psychology, 48, 547–572.

    PubMed  Google Scholar 

  • Fecteau, J. H. (2007). Priming of pop-out depends upon the current goals of observers. Journal of Vision, 7, 1–11.

    PubMed  Google Scholar 

  • Fecteau, J. H., & Munoz, D. P. (2003). Exploring the consequences of the previous trial. Nature Reviews Neuroscience, 4, 435–443.

    PubMed  Google Scholar 

  • Finke, K., Bucher, L., Kerkhoff, G., Keller, I., von Rosen, F., Geyer, T., et al. (2009). Inhibitory and facilitatory location priming in patients with left-sided visual hemi-neglect. Psychological Research, 73, 177–185.

    PubMed  Google Scholar 

  • Found, A., & Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: Investigating a “dimension weighting” account. Perception & Psychophysics, 58, 88–101.

    Google Scholar 

  • Fuggetta, G., Lanfranchi, S., & Campana, G. (2009). Attention has memory: Priming for the size of the attentional focus. Spatial Vision, 22, 147–159.

    PubMed  Google Scholar 

  • Gabrieli, J. D. E., Fleischman, D. A., Keane, M. M., Reminger, S. L., & Morrell, F. (1995). Double dissociation between memory systems underlying explicit and implicit memory in the human brain. Psychological Science, 6, 76–82.

    Google Scholar 

  • Geng, J. J., Eger, E., Ruff, C. C., Kristjánsson, Á., Rotshtein, P., & Driver, J. (2006). On-line attentional selection from competing stimuli in opposite visual fields: Effects on human visual cortex and control processes. Journal of Neurophysiology, 96, 2601–2612.

    PubMed  Google Scholar 

  • Geyer, T., Müller, H. J., & Krummenacher, J. (2006). Cross-trial priming in visual search for singleton conjunction targets: Role of repeated target and distractor features. Perception & Psychophysics, 68, 736–749.

    Google Scholar 

  • Geyer, T., Müller, H. J., & Krummenacher, J. (2007). Cross-trial priming of element positions in visual pop-out search is dependent on stimulus arrangement. Journal of Experimental Psychology: Human Perception & Performance, 33, 788–797.

    Google Scholar 

  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25.

    PubMed  Google Scholar 

  • Goolsby, B. A., & Suzuki, S. (2001). Understanding priming of colorsingleton search: Roles of attention at encoding and “retrieval.” Perception & Psychophysics, 63, 929–944.

    Google Scholar 

  • Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10, 14–23.

    PubMed  Google Scholar 

  • Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P., & Tootell, R. B. (1998). Retinotopy and color sensitivity in human visual cortical area V8. Nature Neuroscience, 1, 235–241.

    PubMed  Google Scholar 

  • Henson, R. N. A., & Rugg, M. D. (2003). Neural response suppression, hemodynamic repetition effects, and behavioural priming. Neuropsychologia, 41, 263–270.

    PubMed  Google Scholar 

  • Henson, R. [N. A.], Shallice, T., & Dolan, R. (2000). Neuroimaging evidence for dissociable forms of repetition priming. Science, 287, 1269–1272.

    PubMed  Google Scholar 

  • Hillstrom, A. P. (2000). Repetition effects in visual search. Perception & Psychophysics, 62, 800–817.

    Google Scholar 

  • Horner, A. J., & Henson, R. N. (2008). Priming, response learning and repetition suppression. Neuropsychologia, 46, 1979–1991.

    PubMed  Google Scholar 

  • Huang, L., Holcombe, A. O., & Pashler, H. (2004). Repetition priming in visual search: Episodic retrieval, not feature priming. Memory & Cognition, 32, 12–20.

    Google Scholar 

  • Huang, L., & Pashler, H. (2005). Expectation and repetition effects in searching for featural singletons in very brief displays. Perception & Psychophysics, 67, 150–157.

    Google Scholar 

  • Ivry, R. B., & Cohen, A. (1990). Discrimination of short- and longrange apparent motion in visual search. Journal of Experimental Psychology: Human Perception & Performance, 16, 317–331.

    Google Scholar 

  • Kourtzi, Z., & Kanwisher, N. (2001). The human lateral occipital complex represents perceived object shape. Science, 24, 1506–1509.

    Google Scholar 

  • Kristjánsson, A. (2001). Increased sensitivity to speed changes during adaptation to first-order, but not to second-order motion. Vision Research, 41, 1825–1832.

    PubMed  Google Scholar 

  • Kristjánsson, Á. (2006a). Rapid learning in attention shifts: A review. Visual Cognition, 13, 324–362.

    Google Scholar 

  • Kristjánsson, Á. (2006b). Simultaneous priming along multiple feature dimensions in a visual search task. Vision Research, 46, 2554–2570.

    PubMed  Google Scholar 

  • Kristjánsson, Á. (2009). Independent and additive repetition priming of motion direction and color in visual search. Psychological Research, 73, 158–166.

    PubMed  Google Scholar 

  • Kristjánsson, Á., Bjarnason, A., Hjaltason, Á. B., & Stefánsdóttir, B. G. (2009). Priming of luminance-defined motion direction in visual search. Attention, Perception, & Psychophysics, 71, 1027–1041.

    Google Scholar 

  • Kristjánsson, Á., & Driver, J. (2008). Priming in visual search: Separating the effects of target repetition, distractor repetition and role-reversal. Vision Research, 48, 1217–1232.

    PubMed  Google Scholar 

  • Kristjánsson, Á., Ingvarsdóttir, Á., & Teitsdóttir, U. D. (2008). Object- and feature-based priming in visual search. Psychonomic Bulletin & Review, 15, 378–384.

    Google Scholar 

  • Kristjánsson, Á., & Nakayama, K. (2003). A primitive memory system for the deployment of transient attention. Perception & Psychophysics, 65, 711–724.

    Google Scholar 

  • Kristjánsson, Á., Vuilleumier, P., Malhotra, P., Husain, M., & Driver, J. (2005). Priming of color and position during visual search in unilateral spatial neglect. Journal of Cognitive Neuroscience, 17, 859–873.

    PubMed  Google Scholar 

  • Kristjánsson, Á., Vuilleumier, P., Schwartz, S., Macaluso, E., & Driver, J. (2007). Neural basis for priming of pop-out during visual search revealed with fMRI. Cerebral Cortex, 17, 1612–1624.

    PubMed  Google Scholar 

  • Kristjánsson, Á., Wang, D., & Nakayama, K. (2002). The role of priming in conjunctive visual search. Cognition, 85, 37–52.

    PubMed  Google Scholar 

  • Lamy, D., Antebi, C., Aviani, N., & Carmel, T. (2008). Priming of pop-out provides reliable measures of target activation and distractor inhibition in selective attention. Vision Research, 48, 30–41.

    PubMed  Google Scholar 

  • Lamy, D., Bar-Anan, Y., & Egeth, H. E. (2008). The role of within-dimension singleton priming in visual search. Journal of Experimental Psychology: Human Perception & Performance, 34, 268–285.

    Google Scholar 

  • Lamy, D., Carmel, T., Egeth, H. E., & Leber, A. B. (2006). Effects of search mode and intertrial priming on singleton search. Perception & Psychophysics, 68, 919–932.

    Google Scholar 

  • Leonard, C. J., & Egeth, H. E. (2008). Attentional guidance in singleton search: An examination of top-down, bottom-up, and intertrial factors. Visual Cognition, 8, 1078–1091.

    Google Scholar 

  • Magnussen, S., & Greenlee, M. W. (1999). The psychophysics of perceptual memory. Psychological Research, 62, 81–92.

    PubMed  Google Scholar 

  • Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22, 657–672.

    Google Scholar 

  • Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception & Psychophysics, 58, 977–991.

    Google Scholar 

  • Marangolo, P., Di Pace, E., Rafal, R., & Scabini, D. (1998). Effects of parietal lesions in humans on color and location priming. Journal of Cognitive Neuroscience, 10, 704–716.

    PubMed  Google Scholar 

  • McBride, J., Leonards, U., & Gilchrist, I. D. (2009). Flexible target representations underlie repetition priming in visual search. Visual Cognition, 17, 655–678.

    Google Scholar 

  • McPeek, R. M., Maljkovic, V., & Nakayama, K. (1999). Saccades require focal attention and are facilitated by a short-term memory system. Vision Research, 39, 1555–1566.

    PubMed  Google Scholar 

  • Meeter, M., & Olivers, C. N. L. (2006). Intertrial priming stemming from ambiguity: A new account of priming in visual search. Visual Cognition, 13, 1–28.

    Google Scholar 

  • Muggleton, N., Juan, C., Cowey, A., & Walsh, V. (2003). Human frontal eye fields and visual search. Journal of Neurophysiology, 89, 3340–3343.

    PubMed  Google Scholar 

  • Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 57, 1–17.

    Google Scholar 

  • Müller, H. J., Krummenacher, J., & Heller, D. (2004). Dimensionspecific intertrial facilitation in visual search for pop-out targets: Evidence for a top-down modulable visual short-term memory effect. Visual Cognition, 11, 577–602.

    Google Scholar 

  • Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus and expectancy-driven effects in dimensional weighting. Journal of Experimental Psychology: Human Perception & Performance, 29, 1021–1035.

    Google Scholar 

  • Olivers, C. N. L., & Meeter, M. (2006). On the dissociation between compound and present/absent tasks in visual search: Intertrial priming is ambiguity driven. Visual Cognition, 13, 1–28.

    Google Scholar 

  • Olivers, C. N. L., & Meeter, M. (2008). Feature priming in visual search does not depend on the dimensional context. Visual Cognition, 16, 785–803.

    Google Scholar 

  • O’Shea, J., Muggleton, N. G., Cowey, A., & Walsh, V. (2007). Human frontal eye fields and spatial priming of pop-out. Journal of Cognitive Neurosciences, 19, 1140–1151.

    Google Scholar 

  • Poldrack, R. A., & Gabrieli, J. D. E. (2001). Characterizing the neural mechanisms of skill learning and repetition priming: Evidence from mirror reading. Brain, 124, 67–82.

    PubMed  Google Scholar 

  • Poldrack, R. A., & Packard, M. G. (2003). Competition among multiple memory systems: Converging evidence from animal and human brain studies. Neuropsychologia, 41, 245–251.

    PubMed  Google Scholar 

  • Pollmann, S., Weidner, R., Müller, H. J., Maertens, M., & von Cramon, D. Y. (2006). Selective and interactive neural correlates of visual dimension changes and response changes. NeuroImage, 30, 254–265.

    PubMed  Google Scholar 

  • Pollmann, S., Weidner, R., Müller, H. J., & von Cramon, D. Y. (2000). A fronto-posterior network involved in visual dimension changes. Journal of Cognitive Neuroscience, 12, 480–494.

    PubMed  Google Scholar 

  • Ruff, C. C., Kristjánsson, A., & Driver, J. (2007). Readout from iconic memory and selective spatial attention involve similar neural processes. Psychological Science, 18, 901–909.

    PubMed  Google Scholar 

  • Saevarsson, S., Jóelsdóttir, S., Hjaltason, H., & Kristjánsson, Á. (2008). Repetition of distractor sets improves visual search performance in hemispatial neglect. Neuropsychologia, 45, 1161–1169.

    Google Scholar 

  • Schacter, D. L., & Badgaiyan, R. D. (2001). Neuroimaging of priming: New perspectives on implicit and explicit memory. Current Directions in Psychological Science, 10, 1–4.

    Google Scholar 

  • Schacter, D. L., & Buckner, R. L. (1998). Priming and the brain. Neuron, 20, 185–195.

    PubMed  Google Scholar 

  • Schacter, D. L., Wig, G. S., & Stevens, W. D. (2007). Reductions in cortical activity during priming. Current Opinion in Neurobiology, 17, 171–176.

    PubMed  Google Scholar 

  • Shimamura, A. P., & Squire, L. R. (1984). Paired-associate learning and priming effects in amnesia: A neuropsychological study. Journal of Experimental Psychology: General, 113, 556–570.

    Google Scholar 

  • Sigurdardottir, H. M., Kristjánsson, Á., & Driver, J. (2008). Repetition streaks increase perceptual sensitivity in brief visual search displays. Visual Cognition, 16, 643–658.

    PubMed  Google Scholar 

  • Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M. M., & Egner, T. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience, 11, 1004–1006.

    PubMed  Google Scholar 

  • Theeuwes, J., Reimann, B., & Mortier, K. (2006). Visual search for featural singletons: No top-down modulation, only bottom-up priming. Visual Cognition, 14, 466–489.

    Google Scholar 

  • Tootell, R. B., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., et al. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15, 3215–3230.

    PubMed  Google Scholar 

  • Treisman, A. [M.] (1992). Perceiving and re-perceiving objects. American Psychologist, 47, 862–875.

    PubMed  Google Scholar 

  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.

    PubMed  Google Scholar 

  • Treisman, A. [M.], & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception & Performance, 16, 459–478.

    Google Scholar 

  • Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247, 301–306.

    PubMed  Google Scholar 

  • Turk-Browne, N. B., Yi, D. J., & Chun, M. M. (2006). Linking implicit and explicit memory: Common encoding factors and shared representations. Neuron, 49, 917–927.

    PubMed  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 27, 92–114.

    Google Scholar 

  • Vuilleumier, P., Schwartz, S., Duhoux, S., Dolan, R. J., & Driver, J. (2005). Selective attention modulates neural substrates of repetition priming and “implicit” visual memory: Suppressions and enhancements revealed by fMRI. Journal of Cognitive Neuroscience, 17, 1245–1260.

    PubMed  Google Scholar 

  • Walsh, V., Le Mare, C., Blaimire, A., & Cowey, A. (2000). Normal discrimination performance accompanied by priming deficits in monkeys with V4 or TEO lesions. NeuroReport, 11, 1459–1462.

    PubMed  Google Scholar 

  • Wang, D., Kristjánsson, Á., & Nakayama, K. (2005). Efficient visual search without top-down or bottom-up guidance. Perception & Psychophysics, 67, 239–253.

    Google Scholar 

  • Warrington, E. K., & Weiskrantz, L. (1968). New method of testing long-term retention with special reference to amnesic patients. Nature, 217, 972–974.

    PubMed  Google Scholar 

  • Wig, G. S., Grafton, S. T., Demos, E., & Kelley, W. M. (2005). Reductions in neural activity underlie behavioral components of repetition priming. Nature Neuroscience, 8, 1228–1233.

    PubMed  Google Scholar 

  • Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238.

    Google Scholar 

  • Wolfe, J. M., Butcher, S. J., Lee, C., & Hyle, M. (2003). Changing your mind: On the contributions of top-down and bottom-up guidance in visual search for feature singletons. Journal of Experimental Psychology: Human Perception & Performance, 29, 483–502.

    Google Scholar 

  • Wolfe, J. M., Friedman-Hill, S. R., & Bilsky, A. B. (1994). Parallel processing of part-whole information in visual search tasks. Perception & Psychophysics, 55, 537–550.

    Google Scholar 

  • Wolfe, J. M., Horowitz, T. S., Kenner, N., Hyle, M., & Vasan, N. (2004). How fast can you change your mind? The speed of top-down guidance in visual search. Vision Research, 44, 1411–1426.

    PubMed  Google Scholar 

  • Xu, Y. (2002a). Encoding color and shape from different parts of an object in visual short-term memory. Perception & Psychophysics, 64, 1260–1280.

    Google Scholar 

  • Xu, Y. (2002b). Feature integration across parts in visual search. Perception, 31, 1335–1347.

    PubMed  Google Scholar 

  • Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception & Performance, 10, 601–621.

    Google Scholar 

  • Yoshida, T., Tsubomi, H., Osaka, M., & Osaka, N. (2003). Priming of pop-out: An fMRI study. Perception, 32(Suppl.), 93c.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychology, University of Iceland, Gimli, 101, Reykjavík, Iceland

    Árni Kristjánsson

  2. University of Padua, Padua, Italy

    Gianluca Campana

Authors
  1. Árni Kristjánsson
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Gianluca Campana
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Árni Kristjánsson.

Additional information

A.K. was supported by the research fund of the University of Iceland and a grant from the Human Frontiers Science Program. G.C. was supported by the Italian Ministry of University and Research (PRIN 2007). This article is partly based on the proceedings of a symposium titled “Where Perception Meets Memory: Visual Priming,” organized by G.C. and A.K. at the European Conference on Visual Perception (ECVP 2007) in Arezzo, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristjánsson, Á., Campana, G. Where perception meets memory: A review of repetition priming in visual search tasks. Attention, Perception, & Psychophysics 72, 5–18 (2010). https://doi.org/10.3758/APP.72.1.5

Download citation

  • Received: 04 May 2009

  • Accepted: 17 August 2009

  • Issue Date: January 2010

  • DOI: https://doi.org/10.3758/APP.72.1.5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Transcranial Magnetic Stimulation
  • Visual Search
  • Repetition Priming
  • Explicit Memory
  • Visual Search Task
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature