Abstract
Visual performance is heterogeneous at isoeccentric locations; it is better on the horizontal than on the vertical meridian and worse at the upper than at the lower region of the vertical meridian (Carrasco, Talgar, & Cameron, 2001; Talgar & Carrasco, 2002). It is unknown whether these performance inhomogeneities are also present in spatial frequency tasks and whether asymmetries present during encoding of visual information also emerge in visual short-term memory (VSTM) tasks. Here, we investigated the similarity of the perceptual and VSTM tasks in spatial frequency discrimination (Experiments 1 and 2) and perceived spatial frequency (Experiments 3 and 4). We found that (1) performance in both simultaneous (perceptual) and delayed (VSTM) spatial frequency discrimination tasks varies as a function of location; it is better along the horizontal than along the vertical meridian; and (2) perceived spatial frequency in both tasks is higher along the horizontal than along the vertical meridian. These results suggest that perceived spatial frequency may mediate performance differences in VSTM tasks across the visual field, implying that the quality with which we encode information affects VSTM.
References
Berkley, M. A., Kitterle, F., & Watkins, D. W. (1975). Grating visibility as a function of orientation and retinal eccentricity. Vision Research, 15, 239–244.
Bisley, J. W., & Pasternak, T. (2000). The multiple roles of visual cortical areas MT/MST in remembering the direction of visual motion. Cerebral Cortex, 10, 1053–1065.
Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.
Caelli, T., Brettel, H., Rentschler, I., & Hilz, R. (1983). Discrimination thresholds in the two-dimensional spatial frequency domain. Vision Research, 23, 129–133.
Cameron, E. L., Tai, J. C., & Carrasco, M. (2002). Covert attention affects the psychometric function of contrast sensitivity. Vision Research, 42, 949–967.
Cannon, M. W., Jr. (1985). Perceived contrast in the fovea and periphery. Journal of the Optical Society of America A, 2, 1760–1768.
Carrasco, M., & Chang, I. (1995). The interaction of objective and subjective organizations in a localization search task. Perception & Psychophysics, 57, 1134–1150.
Carrasco, M., Evert, D. L., Chang, I., & Katz, S. M. (1995). The eccentricity effect: Target eccentricity affects performance on conjunction searches. Perception & Psychophysics, 57, 1241–1261.
Carrasco, M., Giordano, A. M., & McElree, B. (2004). Temporal performance fields: Visual and attentional factors. Vision Research, 44, 1351–1365.
Carrasco, M., Talgar, C. P., & Cameron, E. L. (2001). Characterizing visual performance fields: Effects of transient covert attention, spatial frequency, eccentricity, task and set size. Spatial Vision, 15, 61–75.
Carrasco, M., Williams, P. E., & Yeshurun, Y. (2002). Covert attention increases spatial resolution with or without masks: Support for signal enhancement. Journal of Vision, 2, 467–479.
Cornelissen, F. W., & Greenlee, M. W. (2000). Visual memory for random block patterns defined by luminance and color contrast. Vision Research, 40, 287–299.
Curcio, C. A., & Allen, K. A. (1990). Topography of ganglion cells in human retina. Journal of Comparative Neurology, 300, 5–25.
Curcio, C. A., Sloan, K. R., Kalina, R. E., & Hendrickson, A. E. (1990). Human photoreceptor topography. Journal of Comparative Neurology, 292, 497–523.
Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36, 1827–1837.
Edgar, G. K., & Smith, A. T. (1990). Hemifield differences in perceived spatial frequency. Perception, 19, 759–766.
Fahle, M., & Harris, J. P. (1992). Visual memory for vernier offsets. Vision Research, 32, 1033–1042.
Fuller, S., Rodriguez, R. Z., & Carrasco, M. (2008). Apparent contrast differs across the vertical meridian: Visual and attentional factors. Journal of Vision, 8 (1, Art. 16), 11–16.
Gelb, D. J., & Wilson, H. R. (1983). Shifts in perceived size as a function of contrast and temporal modulation. Vision Research, 23, 71–82.
Georgeson, M. A. (1985). Apparent spatial frequency and contrast of gratings: Separate effects of contrast and duration. Vision Research, 25, 1721–1727.
Georgeson, M. A., & Sullivan, G. D. (1975). Contrast constancy: Deblurring in human vision by spatial frequency channels. Journal of Physiology, 252, 627–656.
Gobell, J., & Carrasco, M. (2005). Attention alters the appearance of spatial frequency and gap size. Psychological Science, 16, 644–651.
He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness. Nature, 383, 334–337.
Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception & Psychophysics, 57, 787–795.
Lalonde, J., & Chaudhuri, A. (2002). Task-dependent transfer of perceptual to memory representations during delayed spatial frequency discrimination. Vision Research, 42, 1759–1769.
Lee, B., & Harris, J. (1996). Contrast transfer characteristics of visual short-term memory. Vision Research, 36, 2159–2166.
Levine, M. W., & McAnany, J. J. (2005). The relative capabilities of the upper and lower visual hemifields. Vision Research, 45, 2820–2830.
Liu, T., Heeger, D. J., & Carrasco, M. (2006). Neural correlates of the visual vertical meridian asymmetry. Journal of Vision, 6, 1294–1306.
Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1, 476–490.
Mackeben, M. (1999). Sustained focal attention and peripheral letter recognition. Spatial Vision, 12, 51–72.
Magnussen, S. (2000). Low-level memory processes in vision. Trends in Neurosciences, 23, 247–251.
Magnussen, S., & Greenlee, M. W. (1992). Retention and disruption of motion information in visual short-term memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 151–156.
Magnussen, S., & Greenlee, M. W. (1999). The psychophysics of perceptual memory. Psychological Research, 62, 81–92.
Magnussen, S., Greenlee, M. W., Asplund, R., & Dyrnes, S. (1991). Stimulus-specific mechanisms of visual short-term memory. Vision Research, 31, 1213–1219.
Magnussen, S., Greenlee, M. W., & Thomas, J. P. (1996). Parallel processing in visual short-term memory. Journal of Experimental Psychology: Human Perception & Performance, 22, 202–212.
Magnussen, S., Idås, E., & Myhre, S. H. (1998). Representation of orientation and spatial frequency in perception and memory: A choice reaction-time analysis. Journal of Experimental Psychology: Human Perception & Performance, 24, 707–718.
Mayfrank, L., Kimmig, H., & Fischer, B. (1987). The role of attention in the preparation of visually guided saccadic eye movements in man. In J. K. O’ Regan & A. Levy-Schoen (Eds.), Eye movements: From physiology to cognition (pp. 37–45). New York: North-Holland.
McAnany, J. J., & Levine, M. W. (2007). Magnocellular and parvocellular visual pathway contributions to visual field anisotropies. Vision Research, 47, 2327–2336.
Nilsson, T. H., & Nelson, T. M. (1981). Delayed monochromatic hue matches indicate characteristics of visual memory. Journal of Experimental Psychology: Human Perception & Performance, 7, 141–150.
Pasternak, T., & Greenlee, M. W. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6, 97–107.
Pasternak, T., & Zaksas, D. (2003). Stimulus specificity and temporal dynamics of working memory for visual motion. Journal of Neurophysiology, 90, 2757–2762.
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.
Perry, V. H., & Cowey, A. (1985). The ganglion cell and cone distributions in the monkey’s retina: Implications for central magnification factors. Vision Research, 25, 1795–1810.
Regan, D. (1985). Storage of spatial-frequency information and spatial-frequency discrimination. Journal of the Optical Society of America A, 2, 619–621.
Regan, D., Bartol, S., Murray, T. J., & Beverley, K. I. (1982). Spatial frequency discrimination in normal vision and in patients with multiple sclerosis. Brain, 105, 735–754.
Regan, D., & Beverley, K. I. (1985). Postadaptation orientation discrimination. Journal of the Optical Society of America A, 2, 147–155.
Rijsdijk, J. P., Kroon, J. N., & van der Wildt, G. J. (1980). Contrast sensitivity as a function of position on the retina. Vision Research, 20, 235–241.
Rovamo, J., & Virsu, V. (1979). An estimation and application of the human cortical magnification factor. Experimental Brain Research, 37, 495–510.
Rovamo, J., Virsu, V., Laurinen, P., & Hyvärinen, L. (1982). Resolution of gratings oriented along and across meridians in peripheral vision. Investigative Ophthalmology & Visual Science, 23, 666–670.
Rubin, N., Nakayama, K., & Shapley, R. (1996). Enhanced perception of illusory contours in the lower versus upper visual hemifields, Science, 271, 651–653.
Sakai, K. (2003). Short-term visual memory for contour curvature in a delayed discrimination task. Japanese Psychological Research, 45, 122–128.
Skottun, B. C., Bradley, A., Sclar, G., Ohzawa, I., & Freeman, R. D. (1987). The effects of contrast on visual orientation and spatial frequency discrimination: A comparison of single cells and behavior. Journal of Neurophysiology, 57, 773–786.
Talgar, C. P., & Carrasco, M. (2002). Vertical meridian asymmetry in spatial resolution: Visual and attentional factors. Psychonomic Bulletin & Review, 9, 714–722.
Vogels, R., & Orban, G. A. (1986). Decision processes in visual discrimination of line orientation. Journal of Experimental Psychology: Human Perception & Performance, 12, 115–132.
Wichmann, F. A., & Hill, N. J. (2001a). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception & Psychophysics, 63, 1293–1313.
Wichmann, F. A., & Hill, N. J. (2001b). The psychometric function: II. Bootstrap-based confidence intervals and sampling. Perception & Psychophysics, 63, 1314–1329.
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was supported by an NIH grant (RO1 EY016200) to M.C.
Rights and permissions
About this article
Cite this article
Montaser-Kouhsari, L., Carrasco, M. Perceptual asymmetries are preserved in short-term memory tasks. Attention, Perception, & Psychophysics 71, 1782–1792 (2009). https://doi.org/10.3758/APP.71.8.1782
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.3758/APP.71.8.1782
Keywords
- Spatial Frequency
- Test Stimulus
- Vision Research
- Psychometric Function
- High Spatial Frequency