Skip to main content

Advertisement

SpringerLink
  • Log in
Perceptual asymmetries are preserved in short-term memory tasks
Download PDF
Download PDF
  • Research Articles
  • Published: November 2009

Perceptual asymmetries are preserved in short-term memory tasks

  • Leila Montaser-Kouhsari1 &
  • Marisa Carrasco1 

Attention, Perception, & Psychophysics volume 71, pages 1782–1792 (2009)Cite this article

  • 512 Accesses

  • 25 Citations

  • Metrics details

Abstract

Visual performance is heterogeneous at isoeccentric locations; it is better on the horizontal than on the vertical meridian and worse at the upper than at the lower region of the vertical meridian (Carrasco, Talgar, & Cameron, 2001; Talgar & Carrasco, 2002). It is unknown whether these performance inhomogeneities are also present in spatial frequency tasks and whether asymmetries present during encoding of visual information also emerge in visual short-term memory (VSTM) tasks. Here, we investigated the similarity of the perceptual and VSTM tasks in spatial frequency discrimination (Experiments 1 and 2) and perceived spatial frequency (Experiments 3 and 4). We found that (1) performance in both simultaneous (perceptual) and delayed (VSTM) spatial frequency discrimination tasks varies as a function of location; it is better along the horizontal than along the vertical meridian; and (2) perceived spatial frequency in both tasks is higher along the horizontal than along the vertical meridian. These results suggest that perceived spatial frequency may mediate performance differences in VSTM tasks across the visual field, implying that the quality with which we encode information affects VSTM.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Berkley, M. A., Kitterle, F., & Watkins, D. W. (1975). Grating visibility as a function of orientation and retinal eccentricity. Vision Research, 15, 239–244.

    Article  PubMed  Google Scholar 

  • Bisley, J. W., & Pasternak, T. (2000). The multiple roles of visual cortical areas MT/MST in remembering the direction of visual motion. Cerebral Cortex, 10, 1053–1065.

    Article  PubMed  Google Scholar 

  • Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.

    Article  PubMed  Google Scholar 

  • Caelli, T., Brettel, H., Rentschler, I., & Hilz, R. (1983). Discrimination thresholds in the two-dimensional spatial frequency domain. Vision Research, 23, 129–133.

    Article  PubMed  Google Scholar 

  • Cameron, E. L., Tai, J. C., & Carrasco, M. (2002). Covert attention affects the psychometric function of contrast sensitivity. Vision Research, 42, 949–967.

    Article  PubMed  Google Scholar 

  • Cannon, M. W., Jr. (1985). Perceived contrast in the fovea and periphery. Journal of the Optical Society of America A, 2, 1760–1768.

    Article  Google Scholar 

  • Carrasco, M., & Chang, I. (1995). The interaction of objective and subjective organizations in a localization search task. Perception & Psychophysics, 57, 1134–1150.

    Google Scholar 

  • Carrasco, M., Evert, D. L., Chang, I., & Katz, S. M. (1995). The eccentricity effect: Target eccentricity affects performance on conjunction searches. Perception & Psychophysics, 57, 1241–1261.

    Google Scholar 

  • Carrasco, M., Giordano, A. M., & McElree, B. (2004). Temporal performance fields: Visual and attentional factors. Vision Research, 44, 1351–1365.

    Article  PubMed  Google Scholar 

  • Carrasco, M., Talgar, C. P., & Cameron, E. L. (2001). Characterizing visual performance fields: Effects of transient covert attention, spatial frequency, eccentricity, task and set size. Spatial Vision, 15, 61–75.

    Article  PubMed  Google Scholar 

  • Carrasco, M., Williams, P. E., & Yeshurun, Y. (2002). Covert attention increases spatial resolution with or without masks: Support for signal enhancement. Journal of Vision, 2, 467–479.

    Article  PubMed  Google Scholar 

  • Cornelissen, F. W., & Greenlee, M. W. (2000). Visual memory for random block patterns defined by luminance and color contrast. Vision Research, 40, 287–299.

    Article  PubMed  Google Scholar 

  • Curcio, C. A., & Allen, K. A. (1990). Topography of ganglion cells in human retina. Journal of Comparative Neurology, 300, 5–25.

    Article  PubMed  Google Scholar 

  • Curcio, C. A., Sloan, K. R., Kalina, R. E., & Hendrickson, A. E. (1990). Human photoreceptor topography. Journal of Comparative Neurology, 292, 497–523.

    Article  PubMed  Google Scholar 

  • Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36, 1827–1837.

    Article  PubMed  Google Scholar 

  • Edgar, G. K., & Smith, A. T. (1990). Hemifield differences in perceived spatial frequency. Perception, 19, 759–766.

    Article  PubMed  Google Scholar 

  • Fahle, M., & Harris, J. P. (1992). Visual memory for vernier offsets. Vision Research, 32, 1033–1042.

    Article  PubMed  Google Scholar 

  • Fuller, S., Rodriguez, R. Z., & Carrasco, M. (2008). Apparent contrast differs across the vertical meridian: Visual and attentional factors. Journal of Vision, 8 (1, Art. 16), 11–16.

    Article  Google Scholar 

  • Gelb, D. J., & Wilson, H. R. (1983). Shifts in perceived size as a function of contrast and temporal modulation. Vision Research, 23, 71–82.

    Article  PubMed  Google Scholar 

  • Georgeson, M. A. (1985). Apparent spatial frequency and contrast of gratings: Separate effects of contrast and duration. Vision Research, 25, 1721–1727.

    Article  PubMed  Google Scholar 

  • Georgeson, M. A., & Sullivan, G. D. (1975). Contrast constancy: Deblurring in human vision by spatial frequency channels. Journal of Physiology, 252, 627–656.

    PubMed  Google Scholar 

  • Gobell, J., & Carrasco, M. (2005). Attention alters the appearance of spatial frequency and gap size. Psychological Science, 16, 644–651.

    Article  PubMed  Google Scholar 

  • He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness. Nature, 383, 334–337.

    Article  PubMed  Google Scholar 

  • Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception & Psychophysics, 57, 787–795.

    Google Scholar 

  • Lalonde, J., & Chaudhuri, A. (2002). Task-dependent transfer of perceptual to memory representations during delayed spatial frequency discrimination. Vision Research, 42, 1759–1769.

    Article  PubMed  Google Scholar 

  • Lee, B., & Harris, J. (1996). Contrast transfer characteristics of visual short-term memory. Vision Research, 36, 2159–2166.

    Article  PubMed  Google Scholar 

  • Levine, M. W., & McAnany, J. J. (2005). The relative capabilities of the upper and lower visual hemifields. Vision Research, 45, 2820–2830.

    Article  PubMed  Google Scholar 

  • Liu, T., Heeger, D. J., & Carrasco, M. (2006). Neural correlates of the visual vertical meridian asymmetry. Journal of Vision, 6, 1294–1306.

    Article  PubMed  Google Scholar 

  • Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1, 476–490.

    Google Scholar 

  • Mackeben, M. (1999). Sustained focal attention and peripheral letter recognition. Spatial Vision, 12, 51–72.

    Article  PubMed  Google Scholar 

  • Magnussen, S. (2000). Low-level memory processes in vision. Trends in Neurosciences, 23, 247–251.

    Article  PubMed  Google Scholar 

  • Magnussen, S., & Greenlee, M. W. (1992). Retention and disruption of motion information in visual short-term memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 151–156.

    Article  Google Scholar 

  • Magnussen, S., & Greenlee, M. W. (1999). The psychophysics of perceptual memory. Psychological Research, 62, 81–92.

    Article  PubMed  Google Scholar 

  • Magnussen, S., Greenlee, M. W., Asplund, R., & Dyrnes, S. (1991). Stimulus-specific mechanisms of visual short-term memory. Vision Research, 31, 1213–1219.

    Article  PubMed  Google Scholar 

  • Magnussen, S., Greenlee, M. W., & Thomas, J. P. (1996). Parallel processing in visual short-term memory. Journal of Experimental Psychology: Human Perception & Performance, 22, 202–212.

    Article  Google Scholar 

  • Magnussen, S., Idås, E., & Myhre, S. H. (1998). Representation of orientation and spatial frequency in perception and memory: A choice reaction-time analysis. Journal of Experimental Psychology: Human Perception & Performance, 24, 707–718.

    Article  Google Scholar 

  • Mayfrank, L., Kimmig, H., & Fischer, B. (1987). The role of attention in the preparation of visually guided saccadic eye movements in man. In J. K. O’ Regan & A. Levy-Schoen (Eds.), Eye movements: From physiology to cognition (pp. 37–45). New York: North-Holland.

    Google Scholar 

  • McAnany, J. J., & Levine, M. W. (2007). Magnocellular and parvocellular visual pathway contributions to visual field anisotropies. Vision Research, 47, 2327–2336.

    Article  PubMed  Google Scholar 

  • Nilsson, T. H., & Nelson, T. M. (1981). Delayed monochromatic hue matches indicate characteristics of visual memory. Journal of Experimental Psychology: Human Perception & Performance, 7, 141–150.

    Article  Google Scholar 

  • Pasternak, T., & Greenlee, M. W. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6, 97–107.

    Article  PubMed  Google Scholar 

  • Pasternak, T., & Zaksas, D. (2003). Stimulus specificity and temporal dynamics of working memory for visual motion. Journal of Neurophysiology, 90, 2757–2762.

    Article  PubMed  Google Scholar 

  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.

    Article  PubMed  Google Scholar 

  • Perry, V. H., & Cowey, A. (1985). The ganglion cell and cone distributions in the monkey’s retina: Implications for central magnification factors. Vision Research, 25, 1795–1810.

    Article  PubMed  Google Scholar 

  • Regan, D. (1985). Storage of spatial-frequency information and spatial-frequency discrimination. Journal of the Optical Society of America A, 2, 619–621.

    Article  Google Scholar 

  • Regan, D., Bartol, S., Murray, T. J., & Beverley, K. I. (1982). Spatial frequency discrimination in normal vision and in patients with multiple sclerosis. Brain, 105, 735–754.

    Article  PubMed  Google Scholar 

  • Regan, D., & Beverley, K. I. (1985). Postadaptation orientation discrimination. Journal of the Optical Society of America A, 2, 147–155.

    Article  Google Scholar 

  • Rijsdijk, J. P., Kroon, J. N., & van der Wildt, G. J. (1980). Contrast sensitivity as a function of position on the retina. Vision Research, 20, 235–241.

    Article  PubMed  Google Scholar 

  • Rovamo, J., & Virsu, V. (1979). An estimation and application of the human cortical magnification factor. Experimental Brain Research, 37, 495–510.

    Article  Google Scholar 

  • Rovamo, J., Virsu, V., Laurinen, P., & Hyvärinen, L. (1982). Resolution of gratings oriented along and across meridians in peripheral vision. Investigative Ophthalmology & Visual Science, 23, 666–670.

    Google Scholar 

  • Rubin, N., Nakayama, K., & Shapley, R. (1996). Enhanced perception of illusory contours in the lower versus upper visual hemifields, Science, 271, 651–653.

    Article  PubMed  Google Scholar 

  • Sakai, K. (2003). Short-term visual memory for contour curvature in a delayed discrimination task. Japanese Psychological Research, 45, 122–128.

    Article  Google Scholar 

  • Skottun, B. C., Bradley, A., Sclar, G., Ohzawa, I., & Freeman, R. D. (1987). The effects of contrast on visual orientation and spatial frequency discrimination: A comparison of single cells and behavior. Journal of Neurophysiology, 57, 773–786.

    PubMed  Google Scholar 

  • Talgar, C. P., & Carrasco, M. (2002). Vertical meridian asymmetry in spatial resolution: Visual and attentional factors. Psychonomic Bulletin & Review, 9, 714–722.

    Article  Google Scholar 

  • Vogels, R., & Orban, G. A. (1986). Decision processes in visual discrimination of line orientation. Journal of Experimental Psychology: Human Perception & Performance, 12, 115–132.

    Article  Google Scholar 

  • Wichmann, F. A., & Hill, N. J. (2001a). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception & Psychophysics, 63, 1293–1313.

    Article  Google Scholar 

  • Wichmann, F. A., & Hill, N. J. (2001b). The psychometric function: II. Bootstrap-based confidence intervals and sampling. Perception & Psychophysics, 63, 1314–1329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychology, New York University, 6 Washington Place, Room 957, 10003, New York, NY

    Leila Montaser-Kouhsari & Marisa Carrasco

Authors
  1. Leila Montaser-Kouhsari
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Marisa Carrasco
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Leila Montaser-Kouhsari.

Additional information

This research was supported by an NIH grant (RO1 EY016200) to M.C.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Montaser-Kouhsari, L., Carrasco, M. Perceptual asymmetries are preserved in short-term memory tasks. Attention, Perception, & Psychophysics 71, 1782–1792 (2009). https://doi.org/10.3758/APP.71.8.1782

Download citation

  • Received: 28 December 2008

  • Accepted: 28 May 2009

  • Issue Date: November 2009

  • DOI: https://doi.org/10.3758/APP.71.8.1782

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Spatial Frequency
  • Test Stimulus
  • Vision Research
  • Psychometric Function
  • High Spatial Frequency
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 89.238.176.4

Not affiliated

Springer Nature

© 2022 Springer Nature Switzerland AG. Part of Springer Nature.