The advantage of being left-handed in interactive sports

Abstract

As compared with their prevalence in the general population, left-handers are overrepresented in the expert domain of many interactive sports. This study examined to what extent this is due to negative perceptual frequency effects—that is, whether the greater frequency of tennis matches with right-handed opponents makes it possible to discriminate the stroke movements of right-handed players more precisely. Fifty-four right-handed and 54 left-handed males in three equal-sized groups of varying levels of tennis expertise (national league experts, local league intermediates, and novices) completed a tennis anticipation test in which they had to predict the subsequent direction of an opponent’s temporally occluded tennis strokes on a computer screen. The results showed that all three groups were better at predicting the direction of strokes by right-handed players. This supports the hypothesis that the overrepresentation of left-handers in the expert domain is partly due to perceptual frequency effects.

References

  1. Abernethy, B., & Mann, D. (2008). Dual pathways or dueling pathways for visual anticipation? A response to van der Kamp, Rivas, van Doorn & Savelsbergh (2007). International Journal of Sport Psychology, 39, 136–141.

    Google Scholar 

  2. Abernethy, B., & Russell, D. G. (1987). The relationship between expertise and visual search strategy in a racquet sport. Human Movement Science, 6, 283–319.

    Article  Google Scholar 

  3. Aggleton, J. P., & Wood, C. J. (1990). Is there a left-handed advantage in “ballistic” sports? International Journal of Sport Psychology, 21, 46–57.

    Google Scholar 

  4. Bisiacchi, P. S., Ripoll, H., Stein, J. F., Simonet, P., & Azemar, G. (1985). Left-handedness in fencers: An attentional advantage? Perceptual & Motor Skills, 61, 507–513.

    Google Scholar 

  5. Brooks, R., Bussière, L. F., Jennions, M. D., & Hunt, J. (2004). Sinister strategies succeed at the cricket World Cup. Proceedings of the Royal Society of London B, 271, 64–66.

    Article  Google Scholar 

  6. Coren, S. (1993). Left hander: Everything you need to know about left-handedness. London: Murry.

    Google Scholar 

  7. Daems, A., & Verfaillie, K. (1999). Viewpoint-dependent priming effects in the perception of human actions and body postures. Visual Cognition, 6, 665–693.

    Article  Google Scholar 

  8. Edwards, S., & Beaton, A. (1996). Howzat?! Why is there an over-representation of left-handed bowlers in professional cricket in the UK? Laterality, 1, 45–50.

    Article  PubMed  Google Scholar 

  9. Farrow, D., & Abernethy, B. (2003). Do expertise and the degree of perception-action coupling affect natural anticipatory performance? Perception, 32, 1127–1139.

    Article  PubMed  Google Scholar 

  10. Faurie, C., & Raymond, M. (2004). Handedness frequency over more than ten thousand years. Proceedings of the Royal Society of London B, 271, S43-S45.

    Article  Google Scholar 

  11. Faurie, C., & Raymond, M. (2005). Handedness, homicide and negative frequency-dependent selection. Proceedings of the Royal Society of London B, 272, 25–28.

    Article  Google Scholar 

  12. Freyd, J. J. (1987). Dynamic mental representations. Psychological Review, 94, 427–438.

    Article  PubMed  Google Scholar 

  13. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.

    Article  PubMed  Google Scholar 

  14. Geschwind, N., & Galaburda, A. (1987). Cerebral lateralization: Biological mechanisms, associations, and pathology. Cambridge, MA: MIT Press.

    Google Scholar 

  15. Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4, 179–192.

    Article  PubMed  Google Scholar 

  16. Goldstein, S. R., & Young, C. A. (1996). “Evolutionary” stable strategy of handedness in major league baseball. Journal of Comparative Psychology, 110, 164–169.

    Article  Google Scholar 

  17. Goodale, M. A., & Haffenden, A. M. (1998). Frames of reference for perception and action in the human visual system. Neuroscience & Biobehavioral Reviews, 22, 161–172.

    Article  Google Scholar 

  18. Grondin, S., Guiard, Y., Ivry, R. B., & Korens, S. (1999). Manual laterality and hitting performance in major league baseball. Journal of Experimental Psychology: Human Perception & Performance, 25, 747–754.

    Article  Google Scholar 

  19. Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., & Blake, R. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12, 711–720.

    Article  PubMed  Google Scholar 

  20. Grouios, G. (2004). Motoric dominance and sporting excellence: Training versus heredity. Perceptual & Motor Skills, 98, 53–66.

    Article  Google Scholar 

  21. Grouios, G., Koidou, I., Tsorbatzouidis, H., & Alexandris, K. (2002). Handedness in sport. Journal of Human Movement Studies, 43, 347–361.

    Google Scholar 

  22. Grouios, G., Tsorbatzoudis, H., Alexandris, K., & Barkoukis, V. (2000). Do left-handed competitors have an innate superiority in sports? Perceptual & Motor Skills, 90, 1273–1282.

    Article  Google Scholar 

  23. Guiard, Y. (1987). Asymmetric division of labor in human skilled bi-manual action: The kinematic chain as a model. Journal of Motor Behavior, 19, 486–517.

    PubMed  Google Scholar 

  24. Hagemann, N., & Strauβ, B. (2006). Perzeptive Expertise von Badmintonspielern [PercMeptual expertise of badminton players]. Zeitschrift für Psychologie, 214, 37–47.

    Article  Google Scholar 

  25. Hagemann, N., Strauß, B., & Cañal-Bruland, R. (2006). Training perceptual skill by orienting visual attention. Journal of Sport & Exercise Psychology, 28, 143–158.

    Google Scholar 

  26. Holtzen, D. W. (2000). Handedness and professional tennis. International Journal of Neuroscience, 105, 101–119.

    Article  PubMed  Google Scholar 

  27. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral & Brain Sciences, 24, 849–878.

    Article  Google Scholar 

  28. Jacobs, A., Pinto, J., & Shiffrar, M. (2004). Experience, context, and the visual perception of human movement. Journal of Experimental Psychology: Human Perception & Performance, 30, 822–835.

    Article  Google Scholar 

  29. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14, 201–211.

    Google Scholar 

  30. Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: Interactions of perception and actions. Psychological Science, 12, 467–472.

    Article  PubMed  Google Scholar 

  31. Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception & Performance, 31, 210–220.

    Article  Google Scholar 

  32. Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society of London B, 200, 269–294.

    Article  Google Scholar 

  33. McLean, J. M., & Ciurczak, F. M. (1982). Bimanual dexterity in major league baseball players: A statistical study. New England Journal of Medicine, 307, 1278–1279.

    PubMed  Google Scholar 

  34. McMorris, T., & Colenso, S. (1996). Anticipation of professional soccer goalkeepers when facing right- and left-footed penalty kicks. Perceptual & Motor Skills, 82, 931–934.

    Google Scholar 

  35. Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford University Press.

    Google Scholar 

  36. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97–113.

    Article  PubMed  Google Scholar 

  37. Olofsson, U., Nyberg, L., & Nilsson, L.-G. (1997). Priming and the recognition of human motion patterns. Visual Cognition, 4, 373–382.

    Article  Google Scholar 

  38. Oram, M. W., & Perrett, D. I. (1996). Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. Journal of Neurophysiology, 76, 109–129.

    PubMed  Google Scholar 

  39. Pollick, F. E., Fidopiastis, C., & Braden, V. (2001). Recognising the style of spatially exaggerated tennis serves. Perception, 30, 323–338.

    Article  PubMed  Google Scholar 

  40. Pollick, F. E., Lestou, V., Ryu, J., & Cho, S.-B. (2002). Estimating the efficiency of recognizing gender and affect from biological motion. Vision Research, 42, 2345–2355.

    Article  PubMed  Google Scholar 

  41. Raymond, M., Pontier, D., Dufour, A. B., & Møller, A. P. (1996). Frequency-dependent maintenance of left handedness in humans. Proceedings of the Royal Society of London B, 263, 1627–1633.

    Article  Google Scholar 

  42. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.

    Article  PubMed  Google Scholar 

  43. Rossi, B., & Zani, A. (1986). Differences in hemispheric functional asymmetry between athletes and nonathletes: Evidence from a unilateral tactile matching task. Perceptual & Motor Skills, 62, 295–300.

    Google Scholar 

  44. Rowe, R. M., & McKenna, F. P. (2001). Skilled anticipation in real-world tasks: Measurement of attentional demands in the domain of tennis. Journal of Experimental Psychology: Applied, 7, 60–67.

    Article  PubMed  Google Scholar 

  45. Runeson, S., & Frykholm, G. (1981). Visual perception of lifted weight. Journal of Experimental Psychology: Human Perception & Performance, 7, 733–740.

    Article  Google Scholar 

  46. Stone, J. V. (1998). Object recognition using spatiotemporal signatures. Vision Research, 38, 947–951.

    Article  PubMed  Google Scholar 

  47. Stone, J. V. (1999). Object recognition: View-specificity and motion-specificity. Vision Research, 39, 4032–4044.

    Article  PubMed  Google Scholar 

  48. Taddei, F., Viggiano, M. P., & Mecacci, L. (1991). Pattern reversal visual evoked potentials in fencers. International Journal of Psychophysiology, 11, 257–260.

    Article  PubMed  Google Scholar 

  49. van der Kamp, J., Rivas, F., van Doorn, H., & Savelsbergh, G. (2008). Ventral and dorsal system contributions to visual anticipation in fast ball sports. International Journal of Sport Psychology, 39, 100–130.

    Google Scholar 

  50. Verfaillie, K. (1993). Orientation-dependent priming effects in the perception of biological motion. Journal of Experimental Psychology: Human Perception & Performance, 19, 992–1013.

    Article  Google Scholar 

  51. Viviani, P. (2002). Motor competence in the perception of dynamic events: A tutorial. In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action (pp. 406–442). Oxford: Oxford University Press.

    Google Scholar 

  52. Ward, P., Williams, A. M., & Bennett, S. J. (2002). Visual search and biological motion perception in tennis. Research Quarterly for Exercise & Sport, 73, 107–112.

    Google Scholar 

  53. Williams, A. M., Davids, K., & Williams, J. G. (1999). Visual perception and action in sport. London: Spon.

    Google Scholar 

  54. Wood, C. J., & Aggleton, J. P. (1989). Handedness in “fast ball” sports: Do left-handers have an innate advantage? British Journal of Psychology, 80, 227–240.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Norbert Hagemann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hagemann, N. The advantage of being left-handed in interactive sports. Attention, Perception, & Psychophysics 71, 1641–1648 (2009). https://doi.org/10.3758/APP.71.7.1641

Download citation

Keywords

  • Video Clip
  • Biological Motion
  • Superior Temporal Sulcus
  • Tennis Player
  • Major League Baseball