Advertisement

Attention, Perception, & Psychophysics

, Volume 71, Issue 7, pp 1641–1648 | Cite as

The advantage of being left-handed in interactive sports

  • Norbert Hagemann
Research Articles

Abstract

As compared with their prevalence in the general population, left-handers are overrepresented in the expert domain of many interactive sports. This study examined to what extent this is due to negative perceptual frequency effects—that is, whether the greater frequency of tennis matches with right-handed opponents makes it possible to discriminate the stroke movements of right-handed players more precisely. Fifty-four right-handed and 54 left-handed males in three equal-sized groups of varying levels of tennis expertise (national league experts, local league intermediates, and novices) completed a tennis anticipation test in which they had to predict the subsequent direction of an opponent’s temporally occluded tennis strokes on a computer screen. The results showed that all three groups were better at predicting the direction of strokes by right-handed players. This supports the hypothesis that the overrepresentation of left-handers in the expert domain is partly due to perceptual frequency effects.

Keywords

Video Clip Biological Motion Superior Temporal Sulcus Tennis Player Major League Baseball 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abernethy, B., & Mann, D. (2008). Dual pathways or dueling pathways for visual anticipation? A response to van der Kamp, Rivas, van Doorn & Savelsbergh (2007). International Journal of Sport Psychology, 39, 136–141.Google Scholar
  2. Abernethy, B., & Russell, D. G. (1987). The relationship between expertise and visual search strategy in a racquet sport. Human Movement Science, 6, 283–319.CrossRefGoogle Scholar
  3. Aggleton, J. P., & Wood, C. J. (1990). Is there a left-handed advantage in “ballistic” sports? International Journal of Sport Psychology, 21, 46–57.Google Scholar
  4. Bisiacchi, P. S., Ripoll, H., Stein, J. F., Simonet, P., & Azemar, G. (1985). Left-handedness in fencers: An attentional advantage? Perceptual & Motor Skills, 61, 507–513.Google Scholar
  5. Brooks, R., Bussière, L. F., Jennions, M. D., & Hunt, J. (2004). Sinister strategies succeed at the cricket World Cup. Proceedings of the Royal Society of London B, 271, 64–66.CrossRefGoogle Scholar
  6. Coren, S. (1993). Left hander: Everything you need to know about left-handedness. London: Murry.Google Scholar
  7. Daems, A., & Verfaillie, K. (1999). Viewpoint-dependent priming effects in the perception of human actions and body postures. Visual Cognition, 6, 665–693.CrossRefGoogle Scholar
  8. Edwards, S., & Beaton, A. (1996). Howzat?! Why is there an over-representation of left-handed bowlers in professional cricket in the UK? Laterality, 1, 45–50.CrossRefPubMedGoogle Scholar
  9. Farrow, D., & Abernethy, B. (2003). Do expertise and the degree of perception-action coupling affect natural anticipatory performance? Perception, 32, 1127–1139.CrossRefPubMedGoogle Scholar
  10. Faurie, C., & Raymond, M. (2004). Handedness frequency over more than ten thousand years. Proceedings of the Royal Society of London B, 271, S43-S45.CrossRefGoogle Scholar
  11. Faurie, C., & Raymond, M. (2005). Handedness, homicide and negative frequency-dependent selection. Proceedings of the Royal Society of London B, 272, 25–28.CrossRefGoogle Scholar
  12. Freyd, J. J. (1987). Dynamic mental representations. Psychological Review, 94, 427–438.CrossRefPubMedGoogle Scholar
  13. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.CrossRefPubMedGoogle Scholar
  14. Geschwind, N., & Galaburda, A. (1987). Cerebral lateralization: Biological mechanisms, associations, and pathology. Cambridge, MA: MIT Press.Google Scholar
  15. Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4, 179–192.CrossRefPubMedGoogle Scholar
  16. Goldstein, S. R., & Young, C. A. (1996). “Evolutionary” stable strategy of handedness in major league baseball. Journal of Comparative Psychology, 110, 164–169.CrossRefGoogle Scholar
  17. Goodale, M. A., & Haffenden, A. M. (1998). Frames of reference for perception and action in the human visual system. Neuroscience & Biobehavioral Reviews, 22, 161–172.CrossRefGoogle Scholar
  18. Grondin, S., Guiard, Y., Ivry, R. B., & Korens, S. (1999). Manual laterality and hitting performance in major league baseball. Journal of Experimental Psychology: Human Perception & Performance, 25, 747–754.CrossRefGoogle Scholar
  19. Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., & Blake, R. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12, 711–720.CrossRefPubMedGoogle Scholar
  20. Grouios, G. (2004). Motoric dominance and sporting excellence: Training versus heredity. Perceptual & Motor Skills, 98, 53–66.CrossRefGoogle Scholar
  21. Grouios, G., Koidou, I., Tsorbatzouidis, H., & Alexandris, K. (2002). Handedness in sport. Journal of Human Movement Studies, 43, 347–361.Google Scholar
  22. Grouios, G., Tsorbatzoudis, H., Alexandris, K., & Barkoukis, V. (2000). Do left-handed competitors have an innate superiority in sports? Perceptual & Motor Skills, 90, 1273–1282.CrossRefGoogle Scholar
  23. Guiard, Y. (1987). Asymmetric division of labor in human skilled bi-manual action: The kinematic chain as a model. Journal of Motor Behavior, 19, 486–517.PubMedGoogle Scholar
  24. Hagemann, N., & Strauβ, B. (2006). Perzeptive Expertise von Badmintonspielern [PercMeptual expertise of badminton players]. Zeitschrift für Psychologie, 214, 37–47.CrossRefGoogle Scholar
  25. Hagemann, N., Strauß, B., & Cañal-Bruland, R. (2006). Training perceptual skill by orienting visual attention. Journal of Sport & Exercise Psychology, 28, 143–158.Google Scholar
  26. Holtzen, D. W. (2000). Handedness and professional tennis. International Journal of Neuroscience, 105, 101–119.CrossRefPubMedGoogle Scholar
  27. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral & Brain Sciences, 24, 849–878.CrossRefGoogle Scholar
  28. Jacobs, A., Pinto, J., & Shiffrar, M. (2004). Experience, context, and the visual perception of human movement. Journal of Experimental Psychology: Human Perception & Performance, 30, 822–835.CrossRefGoogle Scholar
  29. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14, 201–211.Google Scholar
  30. Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: Interactions of perception and actions. Psychological Science, 12, 467–472.CrossRefPubMedGoogle Scholar
  31. Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception & Performance, 31, 210–220.CrossRefGoogle Scholar
  32. Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society of London B, 200, 269–294.CrossRefGoogle Scholar
  33. McLean, J. M., & Ciurczak, F. M. (1982). Bimanual dexterity in major league baseball players: A statistical study. New England Journal of Medicine, 307, 1278–1279.PubMedGoogle Scholar
  34. McMorris, T., & Colenso, S. (1996). Anticipation of professional soccer goalkeepers when facing right- and left-footed penalty kicks. Perceptual & Motor Skills, 82, 931–934.Google Scholar
  35. Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford University Press.Google Scholar
  36. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97–113.CrossRefPubMedGoogle Scholar
  37. Olofsson, U., Nyberg, L., & Nilsson, L.-G. (1997). Priming and the recognition of human motion patterns. Visual Cognition, 4, 373–382.CrossRefGoogle Scholar
  38. Oram, M. W., & Perrett, D. I. (1996). Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. Journal of Neurophysiology, 76, 109–129.PubMedGoogle Scholar
  39. Pollick, F. E., Fidopiastis, C., & Braden, V. (2001). Recognising the style of spatially exaggerated tennis serves. Perception, 30, 323–338.CrossRefPubMedGoogle Scholar
  40. Pollick, F. E., Lestou, V., Ryu, J., & Cho, S.-B. (2002). Estimating the efficiency of recognizing gender and affect from biological motion. Vision Research, 42, 2345–2355.CrossRefPubMedGoogle Scholar
  41. Raymond, M., Pontier, D., Dufour, A. B., & Møller, A. P. (1996). Frequency-dependent maintenance of left handedness in humans. Proceedings of the Royal Society of London B, 263, 1627–1633.CrossRefGoogle Scholar
  42. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.CrossRefPubMedGoogle Scholar
  43. Rossi, B., & Zani, A. (1986). Differences in hemispheric functional asymmetry between athletes and nonathletes: Evidence from a unilateral tactile matching task. Perceptual & Motor Skills, 62, 295–300.Google Scholar
  44. Rowe, R. M., & McKenna, F. P. (2001). Skilled anticipation in real-world tasks: Measurement of attentional demands in the domain of tennis. Journal of Experimental Psychology: Applied, 7, 60–67.CrossRefPubMedGoogle Scholar
  45. Runeson, S., & Frykholm, G. (1981). Visual perception of lifted weight. Journal of Experimental Psychology: Human Perception & Performance, 7, 733–740.CrossRefGoogle Scholar
  46. Stone, J. V. (1998). Object recognition using spatiotemporal signatures. Vision Research, 38, 947–951.CrossRefPubMedGoogle Scholar
  47. Stone, J. V. (1999). Object recognition: View-specificity and motion-specificity. Vision Research, 39, 4032–4044.CrossRefPubMedGoogle Scholar
  48. Taddei, F., Viggiano, M. P., & Mecacci, L. (1991). Pattern reversal visual evoked potentials in fencers. International Journal of Psychophysiology, 11, 257–260.CrossRefPubMedGoogle Scholar
  49. van der Kamp, J., Rivas, F., van Doorn, H., & Savelsbergh, G. (2008). Ventral and dorsal system contributions to visual anticipation in fast ball sports. International Journal of Sport Psychology, 39, 100–130.Google Scholar
  50. Verfaillie, K. (1993). Orientation-dependent priming effects in the perception of biological motion. Journal of Experimental Psychology: Human Perception & Performance, 19, 992–1013.CrossRefGoogle Scholar
  51. Viviani, P. (2002). Motor competence in the perception of dynamic events: A tutorial. In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action (pp. 406–442). Oxford: Oxford University Press.Google Scholar
  52. Ward, P., Williams, A. M., & Bennett, S. J. (2002). Visual search and biological motion perception in tennis. Research Quarterly for Exercise & Sport, 73, 107–112.Google Scholar
  53. Williams, A. M., Davids, K., & Williams, J. G. (1999). Visual perception and action in sport. London: Spon.Google Scholar
  54. Wood, C. J., & Aggleton, J. P. (1989). Handedness in “fast ball” sports: Do left-handers have an innate advantage? British Journal of Psychology, 80, 227–240.PubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2009

Authors and Affiliations

  1. 1.Department of Sport PsychologyUniversity of MünsterMünsterGermany

Personalised recommendations