Haptic perception: A tutorial

Abstract

This tutorial focuses on the sense of touch within the context of a fully active human observer. It is intended for graduate students and researchers outside the discipline who seek an introduction to the rapidly evolving field of human haptics. The tutorial begins with a review of peripheral sensory receptors in skin, muscles, tendons, and joints. We then describe an extensive body of research on “what” and “where” channels, the former dealing with haptic perception of objects, surfaces, and their properties, and the latter with perception of spatial layout on the skin and in external space relative to the perceiver. We conclude with a brief discussion of other significant issues in the field, including vision-touch interactions, affective touch, neural plasticity, and applications.

References

  1. Amazeen, E. L., & Turvey, M. T. (1996). Weight perception and the haptic size-weight illusion are functions of the inertia tensor. Journal of Experimental Psychology: Human Perception & Performance, 22, 213–232.

    Article  Google Scholar 

  2. Amedi, A., Jacobson, G., Hendler, T., Malach, R., & Zohary, E. (2002). Convergence of visual and tactile shape processing in the human lateral occipital complex. Cerebral Cortex, 12, 1202–1212.

    PubMed  Article  Google Scholar 

  3. Amedi, A., Malach, R., Hendler, T., Peled, S., & Zohary, E. (2001). Visuo-haptic object-related activation in the ventral visual pathway. Nature Neuroscience, 4, 324–330.

    PubMed  Article  Google Scholar 

  4. Anderson, N. H. (1974). Algebraic models in perception. In E. Carterette & M. Friedman (Eds.), Handbook of perception II (pp. 215–298). New York: Academic Press.

    Google Scholar 

  5. Armstrong, L., & Marks, L. E. (1999). Haptic perception of linear extent. Perception & Psychophysics, 61, 1211–1226.

    Google Scholar 

  6. Bensmaïa, S. J., & Hollins, M. (2003). The vibrations of texture. Somatosensory & Motor Research, 20, 33–43.

    Article  Google Scholar 

  7. Bensmaïa, S. [J.], & Hollins, M. (2005). Pacinian representations of fine surface texture. Perception & Psychophysics, 67, 842–854.

    Google Scholar 

  8. Bensmaïa, S. [J.], Hollins, M., & Yau, J. (2005). Vibrotactile intensity and frequency information in the Pacinian system: A psychophysical model. Perception & Psychophysics, 67, 828–841.

    Google Scholar 

  9. Berger, C., & Hatwell, Y. (1993). Dimensional and overall similarity classifications in haptics: A developmental study. Cognitive Development, 8, 495–516.

    Article  Google Scholar 

  10. Bergmann Tiest, W., & Kappers, A. (2009). Tactile perception of thermal diffusivity. Attention, Perception, & Psychophysics, 71, 481–489.

    Article  Google Scholar 

  11. Biederman, I. (1987). Recognition by components: A theory of human image understanding. Psychological Review, 94, 115–147.

    PubMed  Article  Google Scholar 

  12. Blake, D. T., Hsiao, S. S., & Johnson, K. O. (1997). Neural coding mechanisms in tactile pattern recognition: The relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. Journal of Neuroscience, 17, 7480–7489.

    PubMed  Google Scholar 

  13. Blake, R., Sobel, K. V., & James, T. W. (2004). Neural synergy between kinetic vision and touch. Psychological Science, 15, 397–402.

    PubMed  Article  Google Scholar 

  14. Blankenburg, F., Ruff, C. C., Deichmann, R., Rees, G., & Driver, J. (2006). The cutaneous rabbit illusion affects human primary sensory cortex somatotopically. PLoS Biology, 4, e69. doi:10.1371/journal.pbio.0040069

    Article  Google Scholar 

  15. Boring, E. G. (1942). Sensation and perception in the history of experimental psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  16. Brodie, E. E., & Ross, H. E. (1984). Sensorimotor mechanisms in weight discrimination. Perception & Psychophysics, 36, 477–481.

    Google Scholar 

  17. Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.

    PubMed  Article  Google Scholar 

  18. Burtt, H. E. (1917). Tactual illusions of movement. Journal of Experimental Psychology: General, 2, 371–385.

    Google Scholar 

  19. Cascio, C. J., & Sathian, K. (2001). Temporal cues contribute to tactile perception of roughness. Journal of Neuroscience, 21, 5289–5296.

    PubMed  Google Scholar 

  20. Chan, J. S., & Newell, F. N. (2008). Behavioral evidence for taskdependent “what” versus “where” processing within and across modalities. Perception & Psychophysics, 70, 36–49.

    Article  Google Scholar 

  21. Charpentier, A. (1891). Analyse experimentale de quelques éléments de la sensation de poids [Experimental study of some aspects of weight perception]. Archives de Physiologie Normales et Pathologiques, 1, 122–135.

    Google Scholar 

  22. Cheng, M. F. (1968). Tactile-kinesthetic perception of length. American Journal of Psychology, 81, 74–82.

    PubMed  Article  Google Scholar 

  23. Cinel, C., Humphreys, G. W., & Poli, R. (2002). Cross-modal illusory conjunctions between vision and touch. Journal of Experimental Psychology: Human Perception & Performance, 28, 1243–1266.

    Article  Google Scholar 

  24. Craig, J. C. (1999). Grating orientation as a measure of tactile spatial acuity. Somatosensory & Motor Research, 16, 197–206.

    Article  Google Scholar 

  25. Davidson, P. W. (1972). Haptic judgments of curvature by blind and sighted humans. Journal of Experimental Psychology: General, 93, 43–55.

    Google Scholar 

  26. Deibert, E., Kraut, M., Kremen, S., & Hart, J. (1999). Neural pathways in tactile object recognition. Neurology, 52, 1413–1417.

    PubMed  Google Scholar 

  27. Dijkerman, H. C., & De Haan, E. H. F. (2007). Somatosensory processes subserving perception and action. Behavioral & Brain Sciences, 30, 189–201.

    Article  Google Scholar 

  28. Edin, B. B., & Johansson, N. (1995). Skin strain patterns provide kinaesthetic information to the human central nervous system. Journal of Physiology, 487, 243–251.

    PubMed  Google Scholar 

  29. Ellis, R. R., & Lederman, S. J. (1998). The golf-ball illusion: Evidence for top-down processing in weight perception. Perception, 27, 193–202.

    PubMed  Article  Google Scholar 

  30. Ellis, R. R., & Lederman, S. J. (1999). The material-weight illusion revisited. Perception & Psychophysics, 61, 1564–1576.

    Google Scholar 

  31. Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.

    PubMed  Article  Google Scholar 

  32. Flach, R., & Haggard, P. (2006). The cutaneous rabbit revisited. Journal of Experimental Psychology: Human Perception & Performance, 32, 717–732.

    Article  Google Scholar 

  33. Gallace, A., Auvray, M., Tan, H. Z., & Spence, C. (2006). When visual transients impair tactile change detection: A novel case of crossmodal change blindness? Neuroscience Letters, 398, 280–285.

    PubMed  Article  Google Scholar 

  34. Gandevia, S. C. (1996). Kinesthesia: Roles for afferent signals and motor commands. In L. B. Rowell & J. T. Shepherd (Eds.), Handbook of physiology: Section 12. Exercise: Regulation and integration of multiple systems (pp. 128–172). New York: Oxford University Press.

    Google Scholar 

  35. Geldard, F. A. (1975). Sensory saltation: Metastability in the perceptual world. Oxford: Erlbaum.

    Google Scholar 

  36. Geldard, F. A., & Sherrick, C. E. (1972). The cutaneous “rabbit”: A perceptual illusion. Science, 178, 178–179.

    PubMed  Article  Google Scholar 

  37. Gentaz, E., Baud-Bovy, G., & Luyat, M. (2008). The haptic perception of spatial orientations. Experimental Brain Research, 187, 331–348.

    Article  Google Scholar 

  38. Gentaz, E., & Hatwell, Y. (1995). The haptic “oblique effect” in children’s and adults’ perception of orientation. Perception, 24, 631–646.

    PubMed  Article  Google Scholar 

  39. Gescheider, G. A. (1974). Effects of signal probability on vibrotactile signal recognition. Perceptual & Motor Skills, 38, 15–23.

    Google Scholar 

  40. Gibson, J. J. (1962). Observations on active touch. Psychological Review, 69, 477–491.

    PubMed  Article  Google Scholar 

  41. Goldreich, D. (2007). A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions. PLoS ONE, 2, e333.

    Article  Google Scholar 

  42. Goldreich, D., & Kanics, I. M. (2003). Tactile acuity is enhanced in blindness. Journal of Neuroscience, 23, 3439–3445.

    PubMed  Google Scholar 

  43. Goodwin, A. W., Macefield, V. G., & Bisley, J. W. (1997). Encoding of object curvature by tactile afferents from human fingers. Journal of Neurophysiology, 78, 2881–2888.

    PubMed  Google Scholar 

  44. Grant, A. C., Thiagarajah, M. C., & Sathian, K. (2000). Tactile perception in blind Braille readers: A psychophysical study of acuity and hyperacuity using gratings and dot patterns. Perception & Psychophysics, 62, 301–312.

    Google Scholar 

  45. Hagen, M. C., Zald, D. H., Thornton, T. A., & Pardo, J. V. (2002). Somatosensory processing in the human inferior prefrontal cortex. Journal of Neurophysiology, 88, 1400–1406.

    PubMed  Google Scholar 

  46. Helbig, H. B., & Ernst, M. O. (2007). Knowledge about a common source can promote visual-haptic integration. Perception, 36, 1523–1533.

    PubMed  Article  Google Scholar 

  47. Heller, M. A., Calcaterra, J. A., Burson, L. L., & Green, S. L. (1997). The tactual horizontal-vertical illusion depends on radial motion of the entire arm. Perception & Psychophysics, 59, 1297–1311.

    Google Scholar 

  48. Heller, M. A., & Joyner, T. D. (1993). Mechanisms in the haptic horizontal-vertical illusion: Evidence from sighted and blind subjects. Perception & Psychophysics, 53, 422–428.

    Google Scholar 

  49. Helson, H., & King, S. M. (1931). The tau effect: An example of psychological relativity. Journal of Experimental Psychology, 14, 202–217.

    Article  Google Scholar 

  50. Hertenstein, M. J., Keltner, D., App, B., Bulleit, B., & Jaskolka, A. R. (2006). Touch communicates distinct emotions. Emotion, 6, 528–533.

    PubMed  Article  Google Scholar 

  51. Ho, H.[-N.], & Jones, L. A. (2004). Material identification using real and simulated thermal cues. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 2462–2465). Los Alamitos, CA: IEEE Computer Society.

    Google Scholar 

  52. Ho, H.-N., & Jones, L. A. (2006). Contribution of thermal cues to material discrimination and localization. Perception & Psychophysics, 68, 118–128.

    Google Scholar 

  53. Hollins, M., Bensmaïa, S. J., & Risner, S. R. (1998). The duplex theory of tactile texture perception. Proceedings of the 14th Annual Meeting of the International Society for Psychophysics (pp. 115–121). Quebec: International Society for Psychophysics.

    Google Scholar 

  54. Hollins, M., Bensmaïa, S. J., & Washburn, S. (2001). Vibrotactile adaptation impairs discrimination of fine, but not coarse, textures. Somatosensory & Motor Research, 18, 253–262.

    Article  Google Scholar 

  55. Howard, I., & Templeton, W. (1966). Human spatial orientation. Oxford: Wiley.

    Google Scholar 

  56. Hunter, I. M. L. (1954). Tactile-kinaesthetic perception of straightness in blind and sighted humans. Quarterly Journal of Experimental Psychology, 6, 149–154.

    Article  Google Scholar 

  57. James, T. W., Humphrey, G. K., Gati, J. S., Servos, P., Menon, R. S., & Goodale, M. A. (2002). Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia, 40, 1706–1714.

    PubMed  Article  Google Scholar 

  58. James, T. W., Servos, P., Kilgour, A. R., Huh, E. J., & Lederman, S. (2006). The influence of familiarity on brain activation during haptic exploration of 3-D facemasks. Neuroscience Letters, 397, 269–273.

    PubMed  Article  Google Scholar 

  59. Johansson, R. S., Landström, U., & Lundström, R. (1982). Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements. Brain Research, 244, 17–25.

    PubMed  Article  Google Scholar 

  60. Johansson, R. S., & Vallbo, A. B. (1983). Tactile sensory coding in the glabrous skin of the human hand. Trends in Neurosciences, 6, 27–32.

    Article  Google Scholar 

  61. Johnson, K. O. (2001). The roles and functions of cutaneous mechanoreceptors. Current Opinion in Neurobiology, 11, 455–461.

    PubMed  Article  Google Scholar 

  62. Johnson, K. O., & Hsiao, S. S. (1994). Evaluation of the relative roles of slowly and rapidly adapting afferent fibers in roughness perception. Canadian Journal of Physiology & Pharmacology, 72, 488–497.

    Google Scholar 

  63. Johnson, K. O., & Lamb, G. D. (1981). Neural mechanisms of spatial tactile discrimination: Neural patterns evoked by braille-like dot patterns in the monkey. Journal of Physiology, 310, 117–144.

    PubMed  Google Scholar 

  64. Johnson, K. O., & Phillips, J. R. (1981). Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition. Journal of Neurophysiology, 46, 1177–1191.

    PubMed  Google Scholar 

  65. Jones, L. A., & Ho, H.-N. (2008). Warm or cool, large or small? The challenge of thermal displays. IEEE Transactions on Haptics, 1, 53–70.

    Article  Google Scholar 

  66. Jones, L. A., & Lederman, S. J. (2006). Human hand function. New York: Oxford University Press.

    Google Scholar 

  67. Jousmäki, V., & Hari, R. (1998). Parchment-skin illusion: Sound-biased touch. Current Biology, 8, R190.

    Article  Google Scholar 

  68. Kandel, E., Schwartz, J., & Jessell, T. (2000). Principles of neural science. New York: McGraw-Hill.

    Google Scholar 

  69. Kappers, A. M. L. (2003). Large systematic deviations in a bimanual parallelity task: Further analysis of contributing factors. Acta Psychologica, 114, 131–145.

    PubMed  Article  Google Scholar 

  70. Kappers, A. M. L. (2007). Haptic spatial processing: Allocentric and egocentric reference frames. Canadian Journal of Experimental Psychology, 61, 208–218.

    PubMed  Google Scholar 

  71. Katz, D. (1989). The world of touch (L. E. Krueger, Trans.). Hillsdale, NJ: Erlbaum. (Original work published 1925)

    Google Scholar 

  72. Kitada, R., Johnsrude, I., Kochiyama, T., & Lederman, S. J. (2009). Functional specialization and convergence in the occipito-temporal cortex supporting haptic and visual identification of human faces and body parts: An fMRI study. Journal of Cognitive Neuroscience, 21, 1–19.

    Article  Google Scholar 

  73. Kitada, R., Kito, T., Saito, D. N., Kochiyama, T., Matsumura, M., Sadato, N., & Lederman, S. J. (2006). Multisensory activation of the intraparietal area when classifying grating orientation: A functional magnetic resonance imaging study. Journal of Neuroscience, 26, 7491–7501.

    PubMed  Article  Google Scholar 

  74. Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial cognition (pp. 1–17). Berlin: Springer.

    Google Scholar 

  75. Klatzky, R. L., & Lederman, S. J. (1993). Toward a computational model of constraint-driven exploration and haptic object identification. Perception, 22, 597–621.

    PubMed  Article  Google Scholar 

  76. Klatzky, R. L., & Lederman, S. J. (1995). Identifying objects from a haptic glance. Perception & Psychophysics, 57, 1111–1123.

    Google Scholar 

  77. Klatzky, R. L., & Lederman, S. J. (2003). Representing spatial location and layout from sparse kinesthetic contacts. Journal of Experimental Psychology: Human Perception & Performance, 29, 310–325.

    Article  Google Scholar 

  78. Klatzky, R. L., & Lederman, S. J. (2007). Object recognition by touch. In J. J. Rieser, D. Ashmead, F. Ebner, & A. Corn (Eds.), Blindness and brain plasticity in navigation and object perception (pp. 185–207). Mahwah, NJ: Erlbaum.

    Google Scholar 

  79. Klatzky, R. L., Lederman, S. J., & Metzger, V. A. (1985). Identifying objects by touch: An “expert system.” Perception & Psychophysics, 37, 299–302.

    Google Scholar 

  80. Klatzky, R. L., Lederman, S. J., & Reed, C. (1987). There’s more to touch than meets the eye: The salience of object dimensions for touch with and without vision. Journal of Experimental Psychology: General, 116, 356–369.

    Article  Google Scholar 

  81. Klatzky, R. L., Loomis, J. M., Lederman, S. J., Wake, H., & Fujita, N. (1993). Haptic identification of objects and their depictions. Perception & Psychophysics, 54, 170–178.

    Google Scholar 

  82. Knibestöl, M., & Vallbo, A. B. (1970). Single unit analysis of mechanoreceptor activity from the human glabrous skin. Acta Physiologica Scandinavica, 80, 178–195.

    PubMed  Article  Google Scholar 

  83. Kosslyn, S. M., & Thompson, W. L. (1993). When is early visual cortex activated during visual mental imagery? Psychological Bulletin, 129, 723–746.

    Article  Google Scholar 

  84. Lacey, S., Campbell, C., & Sathian, K. (2007). Vision and touch: Multiple or multisensory representations of objects? Perception, 36, 1513–1521.

    PubMed  Article  Google Scholar 

  85. Lakatos, S., & Marks, L. E. (1999). Haptic form perception: Relative salience of local and global features. Perception & Psychophysics, 61, 895–908.

    Google Scholar 

  86. LaMotte, R. H., & Srinivasan, M. A. (1993). Responses of cutane-ous mechanoreceptors to the shape of objects applied to the primate fingerpad. Acta Psychologica, 84, 41–52.

    PubMed  Article  Google Scholar 

  87. Lechelt, E. C., Eliuk, J., & Tanne, G. (1976). Perceptual orientation asymmetries: A comparison of visual and haptic space. Perception & Psychophysics, 20, 463–469.

    Google Scholar 

  88. Lechelt, E. C., & Verenka, A. (1980). Spatial anisotropy in intramodal and cross-modal judgments of stimulus orientation: The stability of the oblique effect. Perception, 9, 581–589.

    PubMed  Article  Google Scholar 

  89. Lederman, S. J. (1974). Tactile roughness of grooved surfaces: The touching process and effects of macro- and microsurface structure. Perception & Psychophysics, 16, 385–395.

    Google Scholar 

  90. Lederman, S. J. (1983). Tactual roughness perception: Spatial and temporal determinants. Canadian Journal of Psychology, 37, 498–511.

    Google Scholar 

  91. Lederman, S. J. (1991). Skin and touch. Encyclopedia of human biology (Vol. 7, pp. 51–63). San Diego: Academic Press.

    Google Scholar 

  92. Lederman, S. J., Kilgour, A., Kitada, R., Klatzky, R. L., & Hamilton, C. (2007). Haptic face processing. Canadian Journal of Psychology, 61, 230–241.

    Google Scholar 

  93. Lederman, S. J., & Klatzky, R. L. (1987). Hand movements: A window into haptic object recognition. Cognitive Psychology, 19, 342–368.

    PubMed  Article  Google Scholar 

  94. Lederman, S. J., & Klatzky, R. L. (1990). Haptic classification of common objects: Knowledge-driven exploration. Cognitive Psychology, 22, 421–459.

    PubMed  Article  Google Scholar 

  95. Lederman, S. J., & Klatzky, R. L. (1997). Relative availability of surface and object properties during early haptic processing. Journal of Experimental Psychology: Human Perception & Performance, 23, 1680–1707.

    Article  Google Scholar 

  96. Lederman, S. J., & Klatzky, R. L. (1999). Sensing and displaying spatially distributed fingertip forces in haptic interfaces for teleoperator and virtual environment systems. Presence: Teleoperators & Virtual Environments, 8, 86–103.

    Article  Google Scholar 

  97. Lederman, S. J., & Klatzky, R. L. (2004). Haptic identification of common objects: Effects of constraining the manual exploration process. Perception & Psychophysics, 66, 618–628.

    Google Scholar 

  98. Lederman, S. J., & Klatzky, R. L. (2009). Human haptics. In L. R. Squire (Ed. in Chief), Encyclopedia of neuroscience (Vol. 5, pp. 11–18). San Diego: Academic Press.

    Google Scholar 

  99. Lederman, S. J., Klatzky, R. L., & Barber, P. O. (1985). Spatial and movement-based heuristics for encoding pattern information through touch. Journal of Experimental Psychology: General, 114, 33–49.

    Article  Google Scholar 

  100. Lederman, S. J., Klatzky, R. L., Chataway, C., & Summers, C. D. (1990). Visual mediation and the haptic recognition of two-dimensional pictures of common objects. Perception & Psychophysics, 47, 54–64.

    Google Scholar 

  101. Lederman, S. J., Klatzky, R. L., Rennert-May, E., Lee, J. H., Ng, K., & Hamilton, C. (2008). Haptic processing of facial expressions of emotion in 2D raised-line drawings. IEEE Transactions on Haptics, 1, 27–38.

    Article  Google Scholar 

  102. Lederman, S. J., Loomis, J. M., & Williams, D. A. (1982). The role of vibration in the tactual perception of roughness. Perception & Psychophysics, 32, 109–116.

    Google Scholar 

  103. Lederman, S. J., Summers, C., & Klatzky, R. L. (1996). Cognitive salience of haptic object properties: Role of modality-encoding bias. Perception, 25, 983–998.

    PubMed  Article  Google Scholar 

  104. Lederman, S. J., & Taylor, M. M. (1972). Fingertip force, surface geometry, and the perception of roughness by active touch. Perception & Psychophysics, 12, 401–408.

    Google Scholar 

  105. Lederman, S. J., Thorne, G., & Jones, B. (1986). Perception of texture by vision and touch: Multidimensionality and intersensory integration. Journal of Experimental Psychology: Human Perception & Performance, 12, 169–180.

    Article  Google Scholar 

  106. Legge, G. E., Madison, C., Vaughn, B. N., Cheong, A. M. Y., & Miller, J. C. (2008). Retention of high tactile acuity throughout the life span in blindness. Perception & Psychophysics, 70, 1471–1488.

    Article  Google Scholar 

  107. Löfvenberg, J., & Johansson, R. S. (1984). Regional differences and interindividual variability in sensitivity to vibration in the glabrous skin of the human hand. Brain Research, 301, 65–72.

    PubMed  Article  Google Scholar 

  108. Löken, L. S., Wessberg, J., Morrison, I., McGlone, F., & Olausson, H. (2009). Coding of pleasant touch by unmyelinated afferents in humans. Nature Neuroscience, 12, 547–548.

    PubMed  Article  Google Scholar 

  109. Louw, S., Kappers, A. M. L., & Koenderink, J. J. (2000). Haptic detection thresholds of Gaussian profiles over the whole range of spatial scales. Experimental Brain Research, 132, 369–374.

    Article  Google Scholar 

  110. Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., et al. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences, 92, 8135–8139.

    Article  Google Scholar 

  111. Marchetti, F. M., & Lederman, S. J. (1983). The haptic radial-tangential effect: Two tests of Wong’s “moments-of-inertia” hypothesis. Bulletin of the Psychonomic Society, 21, 43–46.

    Google Scholar 

  112. Marks, D. F. (1973). Visual imagery differences in the recall of pictures. British Journal of Psychology, 64, 17–24.

    PubMed  Google Scholar 

  113. Marr, D. (1982). Vision. San Francisco: W. H. Freeman.

    Google Scholar 

  114. McGlone, F., Vallbo, A. B., Olausson, H., Löken, L., & Wessberg, J. (2007). Discriminative touch and emotional touch. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 61, 173–183.

    Article  Google Scholar 

  115. Meftah, E. M., Belingard, L., & Chapman, E. (2000). Relative effects of the spatial and temporal characteristics of scanned surfaces on human perception of tactile roughness using passive touch. Experimental Brain Research, 132, 351–361.

    Article  Google Scholar 

  116. Merabet, L. B., Hamilton, R., Schlaug, G., Swisher, J. D., Kiriakopoulos, E. T., Pitskel, N. B., et al. (2008). Rapid and reversible recruitment of early visual cortex for touch. PLoS ONE, 27, e3046.

    Article  Google Scholar 

  117. Merzenich, M. M., Kaas, J. H., Wall, J., Sur, M., & Lin, C.-S. (1978). Double representation of the body surface within cytoarchitectonic Areas 3b and 1 in “S1” in the owl monkey (Aotus trivigatus). Journal of Comparative Neurology, 191, 41–73.

    Article  Google Scholar 

  118. Millar, S. (1976). Spatial representation by blind and sighted children. Journal of Experimental Child Psychology, 21, 460–479.

    PubMed  Article  Google Scholar 

  119. Millar, S. (1994). Understanding and representing space: Theory and evidence from studies with blind and sighted children. Oxford: Oxford University Press, Clarendon Press.

    Google Scholar 

  120. Olausson, H., Lamarre, Y., Backlund, H., Morin, C., Wallin, B. G., Starck, G., et al. (2002). Unmyelinated tactile afferents signal touch and project to insular cortex. Nature Neuroscience, 5, 900–904.

    PubMed  Article  Google Scholar 

  121. Olausson, H., Wessberg, J., & Kakuda, N. (2000). Tactile directional sensibility: Peripheral neural mechanisms in man. Brain Research, 866, 178–187.

    PubMed  Article  Google Scholar 

  122. Overvliet, K. E., Smeets, J. B. J., & Brenner, E. (2007). Parallel and serial search in haptics. Perception & Psychophysics, 69, 1059–1069.

    Google Scholar 

  123. Pascual-Leone, A., & Hamilton, R. H. (2001). The metamodal organization of the brain. Progress Brain Research, 134, 427–445.

    Article  Google Scholar 

  124. Pietrini, P., Furey, M. L., Ricciardi, E., Gobbini, M. I., Wu, W. H., Cohen, L., et al. (2004). Beyond sensory images: Object-based representation in the human ventral pathway. Proceedings of the National Academy of Sciences, 101, 5658–5663.

    Article  Google Scholar 

  125. Plaisier, M. A., Bergmann Tiest, W. M., & Kappers, A. M. L. (2008). Haptic pop-out in a hand sweep. Acta Psychologica, 128, 368–377.

    PubMed  Article  Google Scholar 

  126. Pont, S. C. (1997). Haptic curvature comparison. Unpublished doctoral dissertation, Helmholz Instituut, Utrecht.

    Google Scholar 

  127. Pont, S. C., Kappers, A. M. L., & Koenderink, J. J. (1997). Haptic curvature discrimination at several regions of the hand. Perception & Psychophysics, 59, 1225–1240.

    Google Scholar 

  128. Pont, S. C., Kappers, A. M. L., & Koenderink, J. J. (1998). Anisotropy in haptic curvature and shape perception. Perception, 27, 573–589.

    PubMed  Article  Google Scholar 

  129. Pont, S. C., Kappers, A. M. L., & Koenderink, J. J. (1999). Similar mechanisms underlie curvature comparison by static and dynamic touch. Perception & Psychophysics, 61, 874–894.

    Google Scholar 

  130. Reed, C. L., Klatzky, R. L., & Halgren, E. (2005). What vs. where in touch: An fMRI study. NeuroImage, 25, 718–726.

    PubMed  Article  Google Scholar 

  131. Reed, C. L., Shoham, S., & Halgren, E. (2004). Neural substrates of tactile object recognition: An fMRI study. Human Brain Mapping, 21, 236–246.

    PubMed  Article  Google Scholar 

  132. Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368–373.

    Article  Google Scholar 

  133. Rock, I., & Victor, J. (1964). Vision and touch: An experimentally created conflict between the two senses. Science, 143, 594–596.

    PubMed  Article  Google Scholar 

  134. Sanders, A. F. J., & Kappers, A. M. L. (2008). Curvature affects haptic length perception. Acta Psychologica, 129, 340–351.

    PubMed  Google Scholar 

  135. Sathian, K., & Lacey, S. (2007). Tactile perception: Beyond somatosensory cortex. Canadian Journal of Experimental Psychology, 61, 254–264.

    PubMed  Google Scholar 

  136. Sathian, K., & Lacey, S. (2008). Visual cortical involvement during tactile perception in blind and sighted individuals. In J. J. Rieser, D. H. Ashmead, F. F. Ebner, & A. L. Corn (Eds.), Blindness and brain plasticity in navigation and object perception (pp. 113–125). Mahwah, NJ: Erlbaum.

    Google Scholar 

  137. Sathian, K., & Zangaladze, A. (2001). Feeling with the mind’s eye: The role of visual imagery in tactile perception. Optometry & Vision Science, 78, 276–281.

    Article  Google Scholar 

  138. Sathian, K., Zangaladze, A., Hoffman, J. M., & Grafton, S. T. (1997). Feeling with the mind’s eye. NeuroReport, 8, 3877–3881.

    PubMed  Article  Google Scholar 

  139. Sherrick, C. E., & Cholewiak, R. W. (1986). Cutaneous sensitivity. In K. Boff, L. Kaufman, & J. Thomas (Eds.), Handbook of perception and human performance (pp. 1–70). New York: Wiley.

    Google Scholar 

  140. Sherrick, C. E., & Rogers, R. (1966). Apparent haptic movement. Perception & Psychophysics, 1, 175–180.

    Google Scholar 

  141. Shimono, K., Higashiyama, A., & Tam, W. J. (2001). Location of the egocenter in kinesthetic space. Journal of Experimental Psychology: Human Perception & Performance, 27, 848–861.

    Article  Google Scholar 

  142. Spence, C., Nicholls, M. E. R., & Driver, J. (2001). The cost of expecting events in the wrong sensory modality. Perception & Psychophysics, 63, 330–336.

    Google Scholar 

  143. Squire, L. R. (Ed.) (2009). Encyclopedia of neuroscience. San Diego: Academic Press.

    Google Scholar 

  144. Srinivasan, M. A., & LaMotte, R. H. (1995). Tactual discrimination of softness. Journal of Neurophysiology, 73, 88–101.

    PubMed  Google Scholar 

  145. Stevens, J. C. (1979). Thermal intensification of touch sensation: Further extensions of the Weber phenomenon. Sensory Processes, 3, 240–248.

    PubMed  Google Scholar 

  146. Stevens, J. C. (1991). Thermal sensibility. In M. A. Heller & W. Schiff (Eds.), The psychology of touch (pp. 61–90). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  147. Stevens, J. C., & Patterson, M. Q. (1995). Dimensions of spatial acuity in the touch sense: Changes over the life span. Somatosensory & Motor Research, 12, 29–47.

    Article  Google Scholar 

  148. Stoeckel, M. C., Weder, B., Binkofski, F., Buccino, G., Shah, N. J., & Seitz, R. J. (2003). A fronto-parietal circuit for tactile object discrimination: An event-related fMRI study. NeuroImage, 19, 1103–1114.

    PubMed  Article  Google Scholar 

  149. Stoesz, M., Zhang, M., Weisser, V. D., Prather, S. C., Mao, H., & Sathian, K. (2003). Neural networks active during tactile form perception: Common and differential activity during macrospatial and microspatial tasks. International Journal of Psychophysiology, 50, 41–49.

    PubMed  Article  Google Scholar 

  150. Taylor, J. L. (2009). Proprioception. In L. R. Squire (Ed.), Encyclopedia of neuroscience (Vol. 7, pp. 1143–1149). Oxford: Academic Press.

    Google Scholar 

  151. Taylor, M. M., & Lederman, S. J. (1975). Tactile roughness of grooved surfaces: A model and the effect of friction. Perception & Psychophysics, 17, 23–36.

    Google Scholar 

  152. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.

    PubMed  Article  Google Scholar 

  153. Treisman, A. [M.], Sykes, M., & Gelade, G. (1977). Selective attention and stimulus integration. In S. Dornic (Ed.), Attention and performance VI (pp. 333–361). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  154. Trojan, J., Stolle, A. M., Kleinboehl, D., Morch, C. D., Arendt-Nielsen, L., & Hoelzl, R. (2006). The saltation illusion demon-strates integrative processing of spatiotemporal information in thermoceptive and nociceptive networks. Experimental Brain Research, 170, 88–96.

    Article  Google Scholar 

  155. Ungerleider, L. G., & Mishkin, M. (1982) Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  156. van der Horst, B. J., & Kappers, A. M. L. (2008). Haptic curvature comparison of convex and concave shapes. Perception, 37, 1137–1151.

    PubMed  Article  Google Scholar 

  157. Vega-Bermudez, F., & Johnson, K. O. (2004). Fingertip skin conformance accounts, in part, for differences in tactile spatial acuity in young subjects, but not for the decline in spatial acuity with aging. Perception & Psychophysics, 66, 60–67.

    Google Scholar 

  158. Verrillo, R. T., Bolanowski, S. J., Checkosky, C. M., & McGlone, F. (1998). Effects of hydration on tactile sensation. Somatosensory & Motor Research, 15, 93–108.

    Article  Google Scholar 

  159. Vierck, C. J. (1979). Comparisons of punctate, edge and surface stimulation of peripheral slowly-adapting, cutaneous, afferent units of cats. Brain Research, 175, 155–159.

    PubMed  Article  Google Scholar 

  160. Vitevitch, M. S. (2003). Change deafness: The inability to detect changes between two voices. Journal of Experimental Psychology: Human Perception & Performance, 29, 333–342.

    Article  Google Scholar 

  161. Vogels, I. M. L. C., Kappers, A. M. L., & Koenderink, J. J. (1999). Influence of shape on haptic curvature perception. Acta Psychologica, 100, 267–289.

    PubMed  Article  Google Scholar 

  162. Weinstein, S. (1968). Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In D. R. Kenshalo (Ed.), The skin senses (pp. 195–222). Springfield, IL: Thomas.

    Google Scholar 

  163. Westling, G., & Johansson, R. S. (1987). Responses in glabrous skin mechanoreceptors during precision grip in humans. Experimental Brain Research, 66, 128–140.

    Article  Google Scholar 

  164. Wheat, H., & Goodwin, A. W. (2001). Tactile discrimination of edge shape: Limits on spatial resolution imposed by parameters of the peripheral neural population. Journal of Neuroscience, 21, 7751–7763.

    PubMed  Google Scholar 

  165. Williams, L. E., & Bargh, J. A. (2008). Experiencing physical warmth promotes interpersonal warmth. Science, 322, 606–607.

    PubMed  Article  Google Scholar 

  166. Wolfe, J. M., Kluender, K. R., Levi, D. M., Bartoshuk, L. M., Herz, R. S., Klatzky, R. L., & Lederman, S. J. (2008). Sensation and perception (2nd ed.). Sunderland, MA: Sinauer.

    Google Scholar 

  167. Wong, T. S. (1977). Dynamic properties of radial and tangential movements as determinants of the haptic horizontal-vertical illusion with an “L” figure. Journal of Experimental Psychology: Human Perception & Performance, 3, 151–164.

    Article  Google Scholar 

  168. Zangaladze, A., Epstein, C. M., Grafton, S. T., & Sathian, K. (1999). Involvement of visual cortex in tactile discrimination of orientation. Nature, 401, 587–590.

    PubMed  Article  Google Scholar 

  169. Zhang, M., Weisser, V. D., Stilla, R., Prather, S. C., & Sathian, K. (2004). Multisen sory cortical processing of object shape and its relation to mental imagery. Cognitive, Affective, & Behavioral Neuroscience, 4, 251–259.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to S. J. Lederman or R. L. Klatzky.

Additional information

This article was financially supported by grants to S.J.L. from the Canadian Institutes of Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada (NSERC) and to R.L.K. from the National Science Foundation (Grant BCS-0745328).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lederman, S.J., Klatzky, R.L. Haptic perception: A tutorial. Attention, Perception, & Psychophysics 71, 1439–1459 (2009). https://doi.org/10.3758/APP.71.7.1439

Download citation

Keywords

  • Visual Imagery
  • Tactile Perception
  • Haptic Perception
  • Glabrous Skin
  • Sighted Subject