Attention, Perception, & Psychophysics

, Volume 71, Issue 7, pp 1439–1459 | Cite as

Haptic perception: A tutorial

  • S. J. LedermanEmail author
  • R. L. KlatzkyEmail author
Tutorial Review


This tutorial focuses on the sense of touch within the context of a fully active human observer. It is intended for graduate students and researchers outside the discipline who seek an introduction to the rapidly evolving field of human haptics. The tutorial begins with a review of peripheral sensory receptors in skin, muscles, tendons, and joints. We then describe an extensive body of research on “what” and “where” channels, the former dealing with haptic perception of objects, surfaces, and their properties, and the latter with perception of spatial layout on the skin and in external space relative to the perceiver. We conclude with a brief discussion of other significant issues in the field, including vision-touch interactions, affective touch, neural plasticity, and applications.


Visual Imagery Tactile Perception Haptic Perception Glabrous Skin Sighted Subject 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amazeen, E. L., & Turvey, M. T. (1996). Weight perception and the haptic size-weight illusion are functions of the inertia tensor. Journal of Experimental Psychology: Human Perception & Performance, 22, 213–232.CrossRefGoogle Scholar
  2. Amedi, A., Jacobson, G., Hendler, T., Malach, R., & Zohary, E. (2002). Convergence of visual and tactile shape processing in the human lateral occipital complex. Cerebral Cortex, 12, 1202–1212.PubMedCrossRefGoogle Scholar
  3. Amedi, A., Malach, R., Hendler, T., Peled, S., & Zohary, E. (2001). Visuo-haptic object-related activation in the ventral visual pathway. Nature Neuroscience, 4, 324–330.PubMedCrossRefGoogle Scholar
  4. Anderson, N. H. (1974). Algebraic models in perception. In E. Carterette & M. Friedman (Eds.), Handbook of perception II (pp. 215–298). New York: Academic Press.Google Scholar
  5. Armstrong, L., & Marks, L. E. (1999). Haptic perception of linear extent. Perception & Psychophysics, 61, 1211–1226.Google Scholar
  6. Bensmaïa, S. J., & Hollins, M. (2003). The vibrations of texture. Somatosensory & Motor Research, 20, 33–43.CrossRefGoogle Scholar
  7. Bensmaïa, S. [J.], & Hollins, M. (2005). Pacinian representations of fine surface texture. Perception & Psychophysics, 67, 842–854.Google Scholar
  8. Bensmaïa, S. [J.], Hollins, M., & Yau, J. (2005). Vibrotactile intensity and frequency information in the Pacinian system: A psychophysical model. Perception & Psychophysics, 67, 828–841.Google Scholar
  9. Berger, C., & Hatwell, Y. (1993). Dimensional and overall similarity classifications in haptics: A developmental study. Cognitive Development, 8, 495–516.CrossRefGoogle Scholar
  10. Bergmann Tiest, W., & Kappers, A. (2009). Tactile perception of thermal diffusivity. Attention, Perception, & Psychophysics, 71, 481–489.CrossRefGoogle Scholar
  11. Biederman, I. (1987). Recognition by components: A theory of human image understanding. Psychological Review, 94, 115–147.PubMedCrossRefGoogle Scholar
  12. Blake, D. T., Hsiao, S. S., & Johnson, K. O. (1997). Neural coding mechanisms in tactile pattern recognition: The relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. Journal of Neuroscience, 17, 7480–7489.PubMedGoogle Scholar
  13. Blake, R., Sobel, K. V., & James, T. W. (2004). Neural synergy between kinetic vision and touch. Psychological Science, 15, 397–402.PubMedCrossRefGoogle Scholar
  14. Blankenburg, F., Ruff, C. C., Deichmann, R., Rees, G., & Driver, J. (2006). The cutaneous rabbit illusion affects human primary sensory cortex somatotopically. PLoS Biology, 4, e69. doi:10.1371/journal.pbio.0040069CrossRefGoogle Scholar
  15. Boring, E. G. (1942). Sensation and perception in the history of experimental psychology. New York: Appleton-Century-Crofts.Google Scholar
  16. Brodie, E. E., & Ross, H. E. (1984). Sensorimotor mechanisms in weight discrimination. Perception & Psychophysics, 36, 477–481.Google Scholar
  17. Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.PubMedCrossRefGoogle Scholar
  18. Burtt, H. E. (1917). Tactual illusions of movement. Journal of Experimental Psychology: General, 2, 371–385.Google Scholar
  19. Cascio, C. J., & Sathian, K. (2001). Temporal cues contribute to tactile perception of roughness. Journal of Neuroscience, 21, 5289–5296.PubMedGoogle Scholar
  20. Chan, J. S., & Newell, F. N. (2008). Behavioral evidence for taskdependent “what” versus “where” processing within and across modalities. Perception & Psychophysics, 70, 36–49.CrossRefGoogle Scholar
  21. Charpentier, A. (1891). Analyse experimentale de quelques éléments de la sensation de poids [Experimental study of some aspects of weight perception]. Archives de Physiologie Normales et Pathologiques, 1, 122–135.Google Scholar
  22. Cheng, M. F. (1968). Tactile-kinesthetic perception of length. American Journal of Psychology, 81, 74–82.PubMedCrossRefGoogle Scholar
  23. Cinel, C., Humphreys, G. W., & Poli, R. (2002). Cross-modal illusory conjunctions between vision and touch. Journal of Experimental Psychology: Human Perception & Performance, 28, 1243–1266.CrossRefGoogle Scholar
  24. Craig, J. C. (1999). Grating orientation as a measure of tactile spatial acuity. Somatosensory & Motor Research, 16, 197–206.CrossRefGoogle Scholar
  25. Davidson, P. W. (1972). Haptic judgments of curvature by blind and sighted humans. Journal of Experimental Psychology: General, 93, 43–55.Google Scholar
  26. Deibert, E., Kraut, M., Kremen, S., & Hart, J. (1999). Neural pathways in tactile object recognition. Neurology, 52, 1413–1417.PubMedGoogle Scholar
  27. Dijkerman, H. C., & De Haan, E. H. F. (2007). Somatosensory processes subserving perception and action. Behavioral & Brain Sciences, 30, 189–201.CrossRefGoogle Scholar
  28. Edin, B. B., & Johansson, N. (1995). Skin strain patterns provide kinaesthetic information to the human central nervous system. Journal of Physiology, 487, 243–251.PubMedGoogle Scholar
  29. Ellis, R. R., & Lederman, S. J. (1998). The golf-ball illusion: Evidence for top-down processing in weight perception. Perception, 27, 193–202.PubMedCrossRefGoogle Scholar
  30. Ellis, R. R., & Lederman, S. J. (1999). The material-weight illusion revisited. Perception & Psychophysics, 61, 1564–1576.Google Scholar
  31. Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.PubMedCrossRefGoogle Scholar
  32. Flach, R., & Haggard, P. (2006). The cutaneous rabbit revisited. Journal of Experimental Psychology: Human Perception & Performance, 32, 717–732.CrossRefGoogle Scholar
  33. Gallace, A., Auvray, M., Tan, H. Z., & Spence, C. (2006). When visual transients impair tactile change detection: A novel case of crossmodal change blindness? Neuroscience Letters, 398, 280–285.PubMedCrossRefGoogle Scholar
  34. Gandevia, S. C. (1996). Kinesthesia: Roles for afferent signals and motor commands. In L. B. Rowell & J. T. Shepherd (Eds.), Handbook of physiology: Section 12. Exercise: Regulation and integration of multiple systems (pp. 128–172). New York: Oxford University Press.Google Scholar
  35. Geldard, F. A. (1975). Sensory saltation: Metastability in the perceptual world. Oxford: Erlbaum.Google Scholar
  36. Geldard, F. A., & Sherrick, C. E. (1972). The cutaneous “rabbit”: A perceptual illusion. Science, 178, 178–179.PubMedCrossRefGoogle Scholar
  37. Gentaz, E., Baud-Bovy, G., & Luyat, M. (2008). The haptic perception of spatial orientations. Experimental Brain Research, 187, 331–348.CrossRefGoogle Scholar
  38. Gentaz, E., & Hatwell, Y. (1995). The haptic “oblique effect” in children’s and adults’ perception of orientation. Perception, 24, 631–646.PubMedCrossRefGoogle Scholar
  39. Gescheider, G. A. (1974). Effects of signal probability on vibrotactile signal recognition. Perceptual & Motor Skills, 38, 15–23.Google Scholar
  40. Gibson, J. J. (1962). Observations on active touch. Psychological Review, 69, 477–491.PubMedCrossRefGoogle Scholar
  41. Goldreich, D. (2007). A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions. PLoS ONE, 2, e333.CrossRefGoogle Scholar
  42. Goldreich, D., & Kanics, I. M. (2003). Tactile acuity is enhanced in blindness. Journal of Neuroscience, 23, 3439–3445.PubMedGoogle Scholar
  43. Goodwin, A. W., Macefield, V. G., & Bisley, J. W. (1997). Encoding of object curvature by tactile afferents from human fingers. Journal of Neurophysiology, 78, 2881–2888.PubMedGoogle Scholar
  44. Grant, A. C., Thiagarajah, M. C., & Sathian, K. (2000). Tactile perception in blind Braille readers: A psychophysical study of acuity and hyperacuity using gratings and dot patterns. Perception & Psychophysics, 62, 301–312.Google Scholar
  45. Hagen, M. C., Zald, D. H., Thornton, T. A., & Pardo, J. V. (2002). Somatosensory processing in the human inferior prefrontal cortex. Journal of Neurophysiology, 88, 1400–1406.PubMedGoogle Scholar
  46. Helbig, H. B., & Ernst, M. O. (2007). Knowledge about a common source can promote visual-haptic integration. Perception, 36, 1523–1533.PubMedCrossRefGoogle Scholar
  47. Heller, M. A., Calcaterra, J. A., Burson, L. L., & Green, S. L. (1997). The tactual horizontal-vertical illusion depends on radial motion of the entire arm. Perception & Psychophysics, 59, 1297–1311.Google Scholar
  48. Heller, M. A., & Joyner, T. D. (1993). Mechanisms in the haptic horizontal-vertical illusion: Evidence from sighted and blind subjects. Perception & Psychophysics, 53, 422–428.Google Scholar
  49. Helson, H., & King, S. M. (1931). The tau effect: An example of psychological relativity. Journal of Experimental Psychology, 14, 202–217.CrossRefGoogle Scholar
  50. Hertenstein, M. J., Keltner, D., App, B., Bulleit, B., & Jaskolka, A. R. (2006). Touch communicates distinct emotions. Emotion, 6, 528–533.PubMedCrossRefGoogle Scholar
  51. Ho, H.[-N.], & Jones, L. A. (2004). Material identification using real and simulated thermal cues. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 2462–2465). Los Alamitos, CA: IEEE Computer Society.Google Scholar
  52. Ho, H.-N., & Jones, L. A. (2006). Contribution of thermal cues to material discrimination and localization. Perception & Psychophysics, 68, 118–128.Google Scholar
  53. Hollins, M., Bensmaïa, S. J., & Risner, S. R. (1998). The duplex theory of tactile texture perception. Proceedings of the 14th Annual Meeting of the International Society for Psychophysics (pp. 115–121). Quebec: International Society for Psychophysics.Google Scholar
  54. Hollins, M., Bensmaïa, S. J., & Washburn, S. (2001). Vibrotactile adaptation impairs discrimination of fine, but not coarse, textures. Somatosensory & Motor Research, 18, 253–262.CrossRefGoogle Scholar
  55. Howard, I., & Templeton, W. (1966). Human spatial orientation. Oxford: Wiley.Google Scholar
  56. Hunter, I. M. L. (1954). Tactile-kinaesthetic perception of straightness in blind and sighted humans. Quarterly Journal of Experimental Psychology, 6, 149–154.CrossRefGoogle Scholar
  57. James, T. W., Humphrey, G. K., Gati, J. S., Servos, P., Menon, R. S., & Goodale, M. A. (2002). Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia, 40, 1706–1714.PubMedCrossRefGoogle Scholar
  58. James, T. W., Servos, P., Kilgour, A. R., Huh, E. J., & Lederman, S. (2006). The influence of familiarity on brain activation during haptic exploration of 3-D facemasks. Neuroscience Letters, 397, 269–273.PubMedCrossRefGoogle Scholar
  59. Johansson, R. S., Landström, U., & Lundström, R. (1982). Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements. Brain Research, 244, 17–25.PubMedCrossRefGoogle Scholar
  60. Johansson, R. S., & Vallbo, A. B. (1983). Tactile sensory coding in the glabrous skin of the human hand. Trends in Neurosciences, 6, 27–32.CrossRefGoogle Scholar
  61. Johnson, K. O. (2001). The roles and functions of cutaneous mechanoreceptors. Current Opinion in Neurobiology, 11, 455–461.PubMedCrossRefGoogle Scholar
  62. Johnson, K. O., & Hsiao, S. S. (1994). Evaluation of the relative roles of slowly and rapidly adapting afferent fibers in roughness perception. Canadian Journal of Physiology & Pharmacology, 72, 488–497.Google Scholar
  63. Johnson, K. O., & Lamb, G. D. (1981). Neural mechanisms of spatial tactile discrimination: Neural patterns evoked by braille-like dot patterns in the monkey. Journal of Physiology, 310, 117–144.PubMedGoogle Scholar
  64. Johnson, K. O., & Phillips, J. R. (1981). Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition. Journal of Neurophysiology, 46, 1177–1191.PubMedGoogle Scholar
  65. Jones, L. A., & Ho, H.-N. (2008). Warm or cool, large or small? The challenge of thermal displays. IEEE Transactions on Haptics, 1, 53–70.CrossRefGoogle Scholar
  66. Jones, L. A., & Lederman, S. J. (2006). Human hand function. New York: Oxford University Press.CrossRefGoogle Scholar
  67. Jousmäki, V., & Hari, R. (1998). Parchment-skin illusion: Sound-biased touch. Current Biology, 8, R190.CrossRefGoogle Scholar
  68. Kandel, E., Schwartz, J., & Jessell, T. (2000). Principles of neural science. New York: McGraw-Hill.Google Scholar
  69. Kappers, A. M. L. (2003). Large systematic deviations in a bimanual parallelity task: Further analysis of contributing factors. Acta Psychologica, 114, 131–145.PubMedCrossRefGoogle Scholar
  70. Kappers, A. M. L. (2007). Haptic spatial processing: Allocentric and egocentric reference frames. Canadian Journal of Experimental Psychology, 61, 208–218.PubMedGoogle Scholar
  71. Katz, D. (1989). The world of touch (L. E. Krueger, Trans.). Hillsdale, NJ: Erlbaum. (Original work published 1925)Google Scholar
  72. Kitada, R., Johnsrude, I., Kochiyama, T., & Lederman, S. J. (2009). Functional specialization and convergence in the occipito-temporal cortex supporting haptic and visual identification of human faces and body parts: An fMRI study. Journal of Cognitive Neuroscience, 21, 1–19.CrossRefGoogle Scholar
  73. Kitada, R., Kito, T., Saito, D. N., Kochiyama, T., Matsumura, M., Sadato, N., & Lederman, S. J. (2006). Multisensory activation of the intraparietal area when classifying grating orientation: A functional magnetic resonance imaging study. Journal of Neuroscience, 26, 7491–7501.PubMedCrossRefGoogle Scholar
  74. Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial cognition (pp. 1–17). Berlin: Springer.CrossRefGoogle Scholar
  75. Klatzky, R. L., & Lederman, S. J. (1993). Toward a computational model of constraint-driven exploration and haptic object identification. Perception, 22, 597–621.PubMedCrossRefGoogle Scholar
  76. Klatzky, R. L., & Lederman, S. J. (1995). Identifying objects from a haptic glance. Perception & Psychophysics, 57, 1111–1123.Google Scholar
  77. Klatzky, R. L., & Lederman, S. J. (2003). Representing spatial location and layout from sparse kinesthetic contacts. Journal of Experimental Psychology: Human Perception & Performance, 29, 310–325.CrossRefGoogle Scholar
  78. Klatzky, R. L., & Lederman, S. J. (2007). Object recognition by touch. In J. J. Rieser, D. Ashmead, F. Ebner, & A. Corn (Eds.), Blindness and brain plasticity in navigation and object perception (pp. 185–207). Mahwah, NJ: Erlbaum.Google Scholar
  79. Klatzky, R. L., Lederman, S. J., & Metzger, V. A. (1985). Identifying objects by touch: An “expert system.” Perception & Psychophysics, 37, 299–302.Google Scholar
  80. Klatzky, R. L., Lederman, S. J., & Reed, C. (1987). There’s more to touch than meets the eye: The salience of object dimensions for touch with and without vision. Journal of Experimental Psychology: General, 116, 356–369.CrossRefGoogle Scholar
  81. Klatzky, R. L., Loomis, J. M., Lederman, S. J., Wake, H., & Fujita, N. (1993). Haptic identification of objects and their depictions. Perception & Psychophysics, 54, 170–178.Google Scholar
  82. Knibestöl, M., & Vallbo, A. B. (1970). Single unit analysis of mechanoreceptor activity from the human glabrous skin. Acta Physiologica Scandinavica, 80, 178–195.PubMedCrossRefGoogle Scholar
  83. Kosslyn, S. M., & Thompson, W. L. (1993). When is early visual cortex activated during visual mental imagery? Psychological Bulletin, 129, 723–746.CrossRefGoogle Scholar
  84. Lacey, S., Campbell, C., & Sathian, K. (2007). Vision and touch: Multiple or multisensory representations of objects? Perception, 36, 1513–1521.PubMedCrossRefGoogle Scholar
  85. Lakatos, S., & Marks, L. E. (1999). Haptic form perception: Relative salience of local and global features. Perception & Psychophysics, 61, 895–908.Google Scholar
  86. LaMotte, R. H., & Srinivasan, M. A. (1993). Responses of cutane-ous mechanoreceptors to the shape of objects applied to the primate fingerpad. Acta Psychologica, 84, 41–52.PubMedCrossRefGoogle Scholar
  87. Lechelt, E. C., Eliuk, J., & Tanne, G. (1976). Perceptual orientation asymmetries: A comparison of visual and haptic space. Perception & Psychophysics, 20, 463–469.Google Scholar
  88. Lechelt, E. C., & Verenka, A. (1980). Spatial anisotropy in intramodal and cross-modal judgments of stimulus orientation: The stability of the oblique effect. Perception, 9, 581–589.PubMedCrossRefGoogle Scholar
  89. Lederman, S. J. (1974). Tactile roughness of grooved surfaces: The touching process and effects of macro- and microsurface structure. Perception & Psychophysics, 16, 385–395.Google Scholar
  90. Lederman, S. J. (1983). Tactual roughness perception: Spatial and temporal determinants. Canadian Journal of Psychology, 37, 498–511.Google Scholar
  91. Lederman, S. J. (1991). Skin and touch. Encyclopedia of human biology (Vol. 7, pp. 51–63). San Diego: Academic Press.Google Scholar
  92. Lederman, S. J., Kilgour, A., Kitada, R., Klatzky, R. L., & Hamilton, C. (2007). Haptic face processing. Canadian Journal of Psychology, 61, 230–241.Google Scholar
  93. Lederman, S. J., & Klatzky, R. L. (1987). Hand movements: A window into haptic object recognition. Cognitive Psychology, 19, 342–368.PubMedCrossRefGoogle Scholar
  94. Lederman, S. J., & Klatzky, R. L. (1990). Haptic classification of common objects: Knowledge-driven exploration. Cognitive Psychology, 22, 421–459.PubMedCrossRefGoogle Scholar
  95. Lederman, S. J., & Klatzky, R. L. (1997). Relative availability of surface and object properties during early haptic processing. Journal of Experimental Psychology: Human Perception & Performance, 23, 1680–1707.CrossRefGoogle Scholar
  96. Lederman, S. J., & Klatzky, R. L. (1999). Sensing and displaying spatially distributed fingertip forces in haptic interfaces for teleoperator and virtual environment systems. Presence: Teleoperators & Virtual Environments, 8, 86–103.CrossRefGoogle Scholar
  97. Lederman, S. J., & Klatzky, R. L. (2004). Haptic identification of common objects: Effects of constraining the manual exploration process. Perception & Psychophysics, 66, 618–628.Google Scholar
  98. Lederman, S. J., & Klatzky, R. L. (2009). Human haptics. In L. R. Squire (Ed. in Chief), Encyclopedia of neuroscience (Vol. 5, pp. 11–18). San Diego: Academic Press.CrossRefGoogle Scholar
  99. Lederman, S. J., Klatzky, R. L., & Barber, P. O. (1985). Spatial and movement-based heuristics for encoding pattern information through touch. Journal of Experimental Psychology: General, 114, 33–49.CrossRefGoogle Scholar
  100. Lederman, S. J., Klatzky, R. L., Chataway, C., & Summers, C. D. (1990). Visual mediation and the haptic recognition of two-dimensional pictures of common objects. Perception & Psychophysics, 47, 54–64.Google Scholar
  101. Lederman, S. J., Klatzky, R. L., Rennert-May, E., Lee, J. H., Ng, K., & Hamilton, C. (2008). Haptic processing of facial expressions of emotion in 2D raised-line drawings. IEEE Transactions on Haptics, 1, 27–38.CrossRefGoogle Scholar
  102. Lederman, S. J., Loomis, J. M., & Williams, D. A. (1982). The role of vibration in the tactual perception of roughness. Perception & Psychophysics, 32, 109–116.Google Scholar
  103. Lederman, S. J., Summers, C., & Klatzky, R. L. (1996). Cognitive salience of haptic object properties: Role of modality-encoding bias. Perception, 25, 983–998.PubMedCrossRefGoogle Scholar
  104. Lederman, S. J., & Taylor, M. M. (1972). Fingertip force, surface geometry, and the perception of roughness by active touch. Perception & Psychophysics, 12, 401–408.Google Scholar
  105. Lederman, S. J., Thorne, G., & Jones, B. (1986). Perception of texture by vision and touch: Multidimensionality and intersensory integration. Journal of Experimental Psychology: Human Perception & Performance, 12, 169–180.CrossRefGoogle Scholar
  106. Legge, G. E., Madison, C., Vaughn, B. N., Cheong, A. M. Y., & Miller, J. C. (2008). Retention of high tactile acuity throughout the life span in blindness. Perception & Psychophysics, 70, 1471–1488.CrossRefGoogle Scholar
  107. Löfvenberg, J., & Johansson, R. S. (1984). Regional differences and interindividual variability in sensitivity to vibration in the glabrous skin of the human hand. Brain Research, 301, 65–72.PubMedCrossRefGoogle Scholar
  108. Löken, L. S., Wessberg, J., Morrison, I., McGlone, F., & Olausson, H. (2009). Coding of pleasant touch by unmyelinated afferents in humans. Nature Neuroscience, 12, 547–548.PubMedCrossRefGoogle Scholar
  109. Louw, S., Kappers, A. M. L., & Koenderink, J. J. (2000). Haptic detection thresholds of Gaussian profiles over the whole range of spatial scales. Experimental Brain Research, 132, 369–374.CrossRefGoogle Scholar
  110. Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., et al. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences, 92, 8135–8139.CrossRefGoogle Scholar
  111. Marchetti, F. M., & Lederman, S. J. (1983). The haptic radial-tangential effect: Two tests of Wong’s “moments-of-inertia” hypothesis. Bulletin of the Psychonomic Society, 21, 43–46.Google Scholar
  112. Marks, D. F. (1973). Visual imagery differences in the recall of pictures. British Journal of Psychology, 64, 17–24.PubMedGoogle Scholar
  113. Marr, D. (1982). Vision. San Francisco: W. H. Freeman.Google Scholar
  114. McGlone, F., Vallbo, A. B., Olausson, H., Löken, L., & Wessberg, J. (2007). Discriminative touch and emotional touch. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 61, 173–183.CrossRefGoogle Scholar
  115. Meftah, E. M., Belingard, L., & Chapman, E. (2000). Relative effects of the spatial and temporal characteristics of scanned surfaces on human perception of tactile roughness using passive touch. Experimental Brain Research, 132, 351–361.CrossRefGoogle Scholar
  116. Merabet, L. B., Hamilton, R., Schlaug, G., Swisher, J. D., Kiriakopoulos, E. T., Pitskel, N. B., et al. (2008). Rapid and reversible recruitment of early visual cortex for touch. PLoS ONE, 27, e3046.CrossRefGoogle Scholar
  117. Merzenich, M. M., Kaas, J. H., Wall, J., Sur, M., & Lin, C.-S. (1978). Double representation of the body surface within cytoarchitectonic Areas 3b and 1 in “S1” in the owl monkey (Aotus trivigatus). Journal of Comparative Neurology, 191, 41–73.CrossRefGoogle Scholar
  118. Millar, S. (1976). Spatial representation by blind and sighted children. Journal of Experimental Child Psychology, 21, 460–479.PubMedCrossRefGoogle Scholar
  119. Millar, S. (1994). Understanding and representing space: Theory and evidence from studies with blind and sighted children. Oxford: Oxford University Press, Clarendon Press.Google Scholar
  120. Olausson, H., Lamarre, Y., Backlund, H., Morin, C., Wallin, B. G., Starck, G., et al. (2002). Unmyelinated tactile afferents signal touch and project to insular cortex. Nature Neuroscience, 5, 900–904.PubMedCrossRefGoogle Scholar
  121. Olausson, H., Wessberg, J., & Kakuda, N. (2000). Tactile directional sensibility: Peripheral neural mechanisms in man. Brain Research, 866, 178–187.PubMedCrossRefGoogle Scholar
  122. Overvliet, K. E., Smeets, J. B. J., & Brenner, E. (2007). Parallel and serial search in haptics. Perception & Psychophysics, 69, 1059–1069.Google Scholar
  123. Pascual-Leone, A., & Hamilton, R. H. (2001). The metamodal organization of the brain. Progress Brain Research, 134, 427–445.CrossRefGoogle Scholar
  124. Pietrini, P., Furey, M. L., Ricciardi, E., Gobbini, M. I., Wu, W. H., Cohen, L., et al. (2004). Beyond sensory images: Object-based representation in the human ventral pathway. Proceedings of the National Academy of Sciences, 101, 5658–5663.CrossRefGoogle Scholar
  125. Plaisier, M. A., Bergmann Tiest, W. M., & Kappers, A. M. L. (2008). Haptic pop-out in a hand sweep. Acta Psychologica, 128, 368–377.PubMedCrossRefGoogle Scholar
  126. Pont, S. C. (1997). Haptic curvature comparison. Unpublished doctoral dissertation, Helmholz Instituut, Utrecht.Google Scholar
  127. Pont, S. C., Kappers, A. M. L., & Koenderink, J. J. (1997). Haptic curvature discrimination at several regions of the hand. Perception & Psychophysics, 59, 1225–1240.Google Scholar
  128. Pont, S. C., Kappers, A. M. L., & Koenderink, J. J. (1998). Anisotropy in haptic curvature and shape perception. Perception, 27, 573–589.PubMedCrossRefGoogle Scholar
  129. Pont, S. C., Kappers, A. M. L., & Koenderink, J. J. (1999). Similar mechanisms underlie curvature comparison by static and dynamic touch. Perception & Psychophysics, 61, 874–894.Google Scholar
  130. Reed, C. L., Klatzky, R. L., & Halgren, E. (2005). What vs. where in touch: An fMRI study. NeuroImage, 25, 718–726.PubMedCrossRefGoogle Scholar
  131. Reed, C. L., Shoham, S., & Halgren, E. (2004). Neural substrates of tactile object recognition: An fMRI study. Human Brain Mapping, 21, 236–246.PubMedCrossRefGoogle Scholar
  132. Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368–373.CrossRefGoogle Scholar
  133. Rock, I., & Victor, J. (1964). Vision and touch: An experimentally created conflict between the two senses. Science, 143, 594–596.PubMedCrossRefGoogle Scholar
  134. Sanders, A. F. J., & Kappers, A. M. L. (2008). Curvature affects haptic length perception. Acta Psychologica, 129, 340–351.PubMedGoogle Scholar
  135. Sathian, K., & Lacey, S. (2007). Tactile perception: Beyond somatosensory cortex. Canadian Journal of Experimental Psychology, 61, 254–264.PubMedGoogle Scholar
  136. Sathian, K., & Lacey, S. (2008). Visual cortical involvement during tactile perception in blind and sighted individuals. In J. J. Rieser, D. H. Ashmead, F. F. Ebner, & A. L. Corn (Eds.), Blindness and brain plasticity in navigation and object perception (pp. 113–125). Mahwah, NJ: Erlbaum.Google Scholar
  137. Sathian, K., & Zangaladze, A. (2001). Feeling with the mind’s eye: The role of visual imagery in tactile perception. Optometry & Vision Science, 78, 276–281.CrossRefGoogle Scholar
  138. Sathian, K., Zangaladze, A., Hoffman, J. M., & Grafton, S. T. (1997). Feeling with the mind’s eye. NeuroReport, 8, 3877–3881.PubMedCrossRefGoogle Scholar
  139. Sherrick, C. E., & Cholewiak, R. W. (1986). Cutaneous sensitivity. In K. Boff, L. Kaufman, & J. Thomas (Eds.), Handbook of perception and human performance (pp. 1–70). New York: Wiley.Google Scholar
  140. Sherrick, C. E., & Rogers, R. (1966). Apparent haptic movement. Perception & Psychophysics, 1, 175–180.Google Scholar
  141. Shimono, K., Higashiyama, A., & Tam, W. J. (2001). Location of the egocenter in kinesthetic space. Journal of Experimental Psychology: Human Perception & Performance, 27, 848–861.CrossRefGoogle Scholar
  142. Spence, C., Nicholls, M. E. R., & Driver, J. (2001). The cost of expecting events in the wrong sensory modality. Perception & Psychophysics, 63, 330–336.Google Scholar
  143. Squire, L. R. (Ed.) (2009). Encyclopedia of neuroscience. San Diego: Academic Press.Google Scholar
  144. Srinivasan, M. A., & LaMotte, R. H. (1995). Tactual discrimination of softness. Journal of Neurophysiology, 73, 88–101.PubMedGoogle Scholar
  145. Stevens, J. C. (1979). Thermal intensification of touch sensation: Further extensions of the Weber phenomenon. Sensory Processes, 3, 240–248.PubMedGoogle Scholar
  146. Stevens, J. C. (1991). Thermal sensibility. In M. A. Heller & W. Schiff (Eds.), The psychology of touch (pp. 61–90). Hillsdale, NJ: Erlbaum.Google Scholar
  147. Stevens, J. C., & Patterson, M. Q. (1995). Dimensions of spatial acuity in the touch sense: Changes over the life span. Somatosensory & Motor Research, 12, 29–47.CrossRefGoogle Scholar
  148. Stoeckel, M. C., Weder, B., Binkofski, F., Buccino, G., Shah, N. J., & Seitz, R. J. (2003). A fronto-parietal circuit for tactile object discrimination: An event-related fMRI study. NeuroImage, 19, 1103–1114.PubMedCrossRefGoogle Scholar
  149. Stoesz, M., Zhang, M., Weisser, V. D., Prather, S. C., Mao, H., & Sathian, K. (2003). Neural networks active during tactile form perception: Common and differential activity during macrospatial and microspatial tasks. International Journal of Psychophysiology, 50, 41–49.PubMedCrossRefGoogle Scholar
  150. Taylor, J. L. (2009). Proprioception. In L. R. Squire (Ed.), Encyclopedia of neuroscience (Vol. 7, pp. 1143–1149). Oxford: Academic Press.CrossRefGoogle Scholar
  151. Taylor, M. M., & Lederman, S. J. (1975). Tactile roughness of grooved surfaces: A model and the effect of friction. Perception & Psychophysics, 17, 23–36.Google Scholar
  152. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.PubMedCrossRefGoogle Scholar
  153. Treisman, A. [M.], Sykes, M., & Gelade, G. (1977). Selective attention and stimulus integration. In S. Dornic (Ed.), Attention and performance VI (pp. 333–361). Hillsdale, NJ: Erlbaum.Google Scholar
  154. Trojan, J., Stolle, A. M., Kleinboehl, D., Morch, C. D., Arendt-Nielsen, L., & Hoelzl, R. (2006). The saltation illusion demon-strates integrative processing of spatiotemporal information in thermoceptive and nociceptive networks. Experimental Brain Research, 170, 88–96.CrossRefGoogle Scholar
  155. Ungerleider, L. G., & Mishkin, M. (1982) Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.Google Scholar
  156. van der Horst, B. J., & Kappers, A. M. L. (2008). Haptic curvature comparison of convex and concave shapes. Perception, 37, 1137–1151.PubMedCrossRefGoogle Scholar
  157. Vega-Bermudez, F., & Johnson, K. O. (2004). Fingertip skin conformance accounts, in part, for differences in tactile spatial acuity in young subjects, but not for the decline in spatial acuity with aging. Perception & Psychophysics, 66, 60–67.Google Scholar
  158. Verrillo, R. T., Bolanowski, S. J., Checkosky, C. M., & McGlone, F. (1998). Effects of hydration on tactile sensation. Somatosensory & Motor Research, 15, 93–108.CrossRefGoogle Scholar
  159. Vierck, C. J. (1979). Comparisons of punctate, edge and surface stimulation of peripheral slowly-adapting, cutaneous, afferent units of cats. Brain Research, 175, 155–159.PubMedCrossRefGoogle Scholar
  160. Vitevitch, M. S. (2003). Change deafness: The inability to detect changes between two voices. Journal of Experimental Psychology: Human Perception & Performance, 29, 333–342.CrossRefGoogle Scholar
  161. Vogels, I. M. L. C., Kappers, A. M. L., & Koenderink, J. J. (1999). Influence of shape on haptic curvature perception. Acta Psychologica, 100, 267–289.PubMedCrossRefGoogle Scholar
  162. Weinstein, S. (1968). Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In D. R. Kenshalo (Ed.), The skin senses (pp. 195–222). Springfield, IL: Thomas.Google Scholar
  163. Westling, G., & Johansson, R. S. (1987). Responses in glabrous skin mechanoreceptors during precision grip in humans. Experimental Brain Research, 66, 128–140.CrossRefGoogle Scholar
  164. Wheat, H., & Goodwin, A. W. (2001). Tactile discrimination of edge shape: Limits on spatial resolution imposed by parameters of the peripheral neural population. Journal of Neuroscience, 21, 7751–7763.PubMedGoogle Scholar
  165. Williams, L. E., & Bargh, J. A. (2008). Experiencing physical warmth promotes interpersonal warmth. Science, 322, 606–607.PubMedCrossRefGoogle Scholar
  166. Wolfe, J. M., Kluender, K. R., Levi, D. M., Bartoshuk, L. M., Herz, R. S., Klatzky, R. L., & Lederman, S. J. (2008). Sensation and perception (2nd ed.). Sunderland, MA: Sinauer.Google Scholar
  167. Wong, T. S. (1977). Dynamic properties of radial and tangential movements as determinants of the haptic horizontal-vertical illusion with an “L” figure. Journal of Experimental Psychology: Human Perception & Performance, 3, 151–164.CrossRefGoogle Scholar
  168. Zangaladze, A., Epstein, C. M., Grafton, S. T., & Sathian, K. (1999). Involvement of visual cortex in tactile discrimination of orientation. Nature, 401, 587–590.PubMedCrossRefGoogle Scholar
  169. Zhang, M., Weisser, V. D., Stilla, R., Prather, S. C., & Sathian, K. (2004). Multisen sory cortical processing of object shape and its relation to mental imagery. Cognitive, Affective, & Behavioral Neuroscience, 4, 251–259.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2009

Authors and Affiliations

  1. 1.Department of PsychologyQueen’s UniversityKingstonCanada
  2. 2.Department of PsychologyCarnegie Mellon UniversityPittsburgh

Personalised recommendations