Advertisement

Attention, Perception, & Psychophysics

, Volume 71, Issue 6, pp 1399–1413 | Cite as

Evaluation of an imputed pitch velocity model of the auditory tau effect

  • Molly J. Henry
  • J. Devin McAuleyEmail author
  • Marta Zaleha
Research Articles

Abstract

This article extends an imputed pitch velocity model of the auditory kappa effect proposed by Henry and McAuley (2009a) to the auditory tau effect. Two experiments were conducted using an AXB design in which listeners judged the relative pitch of a middle target tone (X) in ascending and descending three-tone sequences. In Experiment 1, sequences were isochronous, establishing constant fast, medium, and slow velocity conditions. No systematic distortions in perceived target pitch were observed, and thresholds were similar across velocity conditions. Experiment 2 introduced to-be-ignored variations in target timing. Variations in target timing that deviated from constant velocity conditions introduced systematic distortions in perceived target pitch, indicative of a robust auditory tau effect. Consistent with an auditory motion hypothesis, the magnitude of the tau effect was larger at faster velocities. In addition, the tau effect was generally stronger for descending sequences than for ascending sequences. Combined with previous work on the auditory kappa effect, the imputed velocity model and associated auditory motion hypothesis provide a unified quantitative account of both auditory tau and kappa effects. In broader terms, these findings add support to the view that pitch and time relations in auditory patterns are fundamentally interdependent.

Keywords

Velocity Condition Representational Momentum Absolute Pitch Target Tone Auditory Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbe, M. (1936). The spatial effect upon the perception of time. Japanese Journal of Experimental Psychology, 3, 1–52.Google Scholar
  2. Abe, S. (1935). Experimental study on the correlation between time and space. Tohoku Psychologica Folia, 3, 53–68.Google Scholar
  3. Anderson, N. H. (1974). Algebraic models in perception. In E. Cartheterette & M. P. Friedman (Eds.), Handbook of perception: Vol. II. Psychophysical judgment and measurement (pp. 258–259). New York: Academic Press.Google Scholar
  4. Ayotte, J., Peretz, I., Rousseau, C., Bard, C., & Bojanowski, M. (2000). Patterns of music agnosia associated with middle cerebral artery infarcts. Brain, 123, 1926–1938. doi:10.1093/brain/123.9.1926PubMedCrossRefGoogle Scholar
  5. Barnes, R., & Jones, M. R. (2000). Expectancy, attention, and time. Cognitive Psychology, 41, 254–311. doi:10.1006/cogp.2000.0738PubMedCrossRefGoogle Scholar
  6. Benussi, V. (1913). Psychologie der Zeitauffassung. Heidelberg: Carl Winters Universitätsbuchhandlung.Google Scholar
  7. Bill, J. C., & Teft, L. W. (1969). Space-time relations: Effects of time on perceived visual extent. Journal of Experimental Psychology, 81, 196–199. doi:10.1037/h0027425PubMedCrossRefGoogle Scholar
  8. Bill, J. C., & Teft, L. W. (1972). Space-time relations: The effects of variations in stimulus and interstimulus interval duration on perceived visual extent. Acta Psychologica, 36, 358–369.PubMedCrossRefGoogle Scholar
  9. Burns, E. M., & Ward, W. D. (1978). Categorical perception—phenomenon or epiphenomenon: Evidence from experiments in the perception of melodic musical intervals. Journal of the Acoustical Society of America, 63, 456–468.PubMedCrossRefGoogle Scholar
  10. Christensen, I. P., & Huang, Y. L. (1979). The auditory tau effect and memory for pitch. Perception & Psychophysics, 26, 489–494.CrossRefGoogle Scholar
  11. Cohen, J., Christensen, I., & Ono, A. (1974). Influence of temporal intervals on comparative judgements of pitch: A study of subjective relativity. Tohoku Psychologica Folia, 33, 76–87.Google Scholar
  12. Cohen, J., Hansel, C. E. M., & Sylvester, J. D. (1953). A new phenomenon in time judgment. Nature, 172, 901.PubMedCrossRefGoogle Scholar
  13. Cohen, J., Hansel, C. E. M., & Sylvester, J. D. (1954). Interdependence of temporal and auditory judgments. Nature, 174, 642–644. doi:10.1038/174642a0PubMedCrossRefGoogle Scholar
  14. Cohen, J., Hansel, C. E. M., & Sylvester, J. D. (1955). Interdependence in judgments of space, time and movement. Acta Psychologica, 11, 360–372.Google Scholar
  15. Collyer, C. E. (1977). Discrimination of spatial and temporal intervals defined by three light flashes: Effects of spacing on temporal judgments and of timing on spatial judgments. Perception & Psychophysics, 21, 357–364. doi:10.1016/j.humov.2007.07.009CrossRefGoogle Scholar
  16. Crowder, R. G., & Neath, I. (1995). The influence of pitch on time perception in short melodies. Music Perception, 12, 379–386.Google Scholar
  17. Di Pietro, M., Laganaro, M., Leemann, B., & Schnider, A. (2004). Receptive amusia: Temporal auditory processing deficit in a professional musician following a left temporo-parietal lesion. Neuropsychologia, 42, 868–877. doi:10.1016/j.neuropsychologia.2003.12.004PubMedCrossRefGoogle Scholar
  18. Douglas, K. M., & Bilkey, D. K. (2007). Amusia is associated with deficits in spatial processing. Nature Neuroscience, 10, 915–921. doi:10.1038/nn1925PubMedCrossRefGoogle Scholar
  19. Ellis, R. J., & Jones, M. R. (2009). The role of accent salience and joint accent structure in meter perception. Journal of Experimental Psychology: Human Perception & Performance, 35, 264–280. doi:10.1037/a0013482CrossRefGoogle Scholar
  20. Eriksen, C. E. (1995). The flankers task and response competition: A useful took for investigating a variety of cognitive problems. In C. Bundesen & H. Shibuya (Eds.), Visual selective attention (pp. 101–118). Hillsdale, NJ: Erlbaum.Google Scholar
  21. Foxton, J. M., Dean, J. L., Gee, R., Peretz, I., & Griffiths, T. D. (2004). Characterization of deficits in pitch perception underlying “tone deafness.” Brain, 127, 801–810. doi:10.1093/brain/awh105PubMedCrossRefGoogle Scholar
  22. Foxton, J. M., Nandy, R. K., & Griffiths, T. D. (2006). Rhythm deficits in “tone deafness.” Brain & Cognition, 62, 24–29. doi:10.1016/j.bandc.2006.03.005CrossRefGoogle Scholar
  23. Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, & Cognition, 10, 126–132. doi:10.1037/0278-7393.10.1.126CrossRefGoogle Scholar
  24. Freyd, J. J., Kelly, M. H., & DeKay, M. L. (1990). Representational momentum in memory for pitch. Journal of Experimental Psychology: Learning, Memory, & Cognition, 16, 1107–1117. doi:10.1037/0278-7393.16.6.1107CrossRefGoogle Scholar
  25. Geldreich, E. W. (1934). A lecture-room demonstrator of the visual tau effect. American Journal of Psychology, 46, 483–485. doi:10.2307/1415607CrossRefGoogle Scholar
  26. Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.Google Scholar
  27. Griffiths, T. D., Rees, A., Witton, C., Cross, P. M., Shakir, R. A., & Green, G. G. R. (1997). Spatial and temporal processing deficits following right hemisphere infarction: A psychophysical study. Brain, 120, 785–794. doi:10.1093/brain/120.5.785PubMedCrossRefGoogle Scholar
  28. Grondin, S., & Plourde, M. (2007). Discrimination of time intervals presented in sequences: Spatial effects with multiple auditory sources. Human Movement Science, 26, 702–716. doi:10.1016/j.humov.2007.07.009PubMedCrossRefGoogle Scholar
  29. Handel, S. (1988). Space is to time as vision is to audition: Seductive but misleading. Journal of Experimental Psychology: Human Perception & Performance, 14, 315–317. doi:10.1037/0096-1523.14.2.315CrossRefGoogle Scholar
  30. Helson, H., & King, S. M. (1931). The tau effect: An example of psychological relativity. Journal of Experimental Psychology, 14, 202–217.CrossRefGoogle Scholar
  31. Henry, M. J., & McAuley, J. D. (2009a). Evaluation of an imputed pitch velocity model of the auditory kappa effect. Journal of Experimental Psychology: Human Perception & Performance, 35, 551–564.CrossRefGoogle Scholar
  32. Henry, M. J., & McAuley, J. D. (2009b). Relative contribution of frequency and duration cues to estimates of frequency change in tone sequences and glides. Journal of the Acoustical Society of America, 125, 2523.Google Scholar
  33. Huang, Y. L., & Jones, B. (1982). On the interdependence of temporal and spatial judgments. Perception & Psychophysics, 32, 7–14.CrossRefGoogle Scholar
  34. Hubbard, T. L. (1995). Auditory representational momentum: Surface form, direction, and velocity effects. American Journal of Psychology, 108, 255–274. doi:10.2307/1423131CrossRefGoogle Scholar
  35. Hyde, K. L., & Peretz, I. (2004). Brains that are out of tune but in time. Psychological Science, 15, 356–360. doi:10.1111/j.0956-7976.2004.00683.xPubMedCrossRefGoogle Scholar
  36. Ishihara, M., Keller, P. E., Rossetti, Y., & Prinz, W. (2008). Horizontal spatial representations of time: Evidence for the STEARC effect. Cortex, 44, 454–461. doi:10.1016/j.cortex.2007.08.010PubMedCrossRefGoogle Scholar
  37. Johnsrude, I. S., Penhune, V. B., & Zatorre, R. J. (2000). Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain, 123, 155–163. doi:10.1093/brain/123.1.155PubMedCrossRefGoogle Scholar
  38. Johnston, H. M., & Jones, M. R. (2006). Higher order pattern structure influences auditory representational momentum. Journal of Experimental Psychology: Human Perception & Performance, 32, 2–17. doi:10.1037/0096-1523.32.1.2CrossRefGoogle Scholar
  39. Jones, B., & Huang, Y. L. (1982). Space-time dependencies in psychophysical judgment of extent and duration: Algebraic models of the tau and kappa effects. Psychological Bulletin, 91, 128–142.CrossRefGoogle Scholar
  40. Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83, 323–335. doi:10.1037/0033-295X.83.5.323PubMedCrossRefGoogle Scholar
  41. Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13, 313–319. doi:10.1111/1467-9280.00458PubMedCrossRefGoogle Scholar
  42. Jones, M. R., & Yee, W. (1993). Attending to auditory events: The role of temporal organization. In S. McAdams & E. Bigand (Eds.), Thinking in sound: The cognitive psychology of human audition (pp. 69–112). New York: Clarendon Press, Oxford University Press.Google Scholar
  43. Kubovy, M. (1981). Concurrent-pitch segregation and the theory of indispensable attributes. In M. Kubovy & J. R. Pomerantz (Eds.), Perceptual organization (pp. 58–98). Hillsdale, NJ: Erlbaum.Google Scholar
  44. Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106, 119–159. doi:10.1037//0033-295X.106.1.119CrossRefGoogle Scholar
  45. Lebrun-Guillaud, G., & Tillmann, B. (2007). Influence of a tone’s tonal function on temporal change detection. Perception & Psychophysics, 69, 1450–1459.CrossRefGoogle Scholar
  46. Liégeois-Cheval, C., Peretz, I., Babai, M., Laguitton, V., & Chauvel, P. (1998). Contribution of different cortical areas in the temporal lobes to music processing. Brain, 121, 1853–1867. doi:10.1093/brain/121.10.1853CrossRefGoogle Scholar
  47. MacKenzie, N. (2007). The kappa effect in pitch/time context (Doctoral dissertation, Ohio State University, (2007). Dissertation Abstracts International, 68, 132.Google Scholar
  48. MacKenzie, N., & Jones, M. R. (2005, November). The auditory kappa effect revisited. Paper presented at the 46th Annual Meeting of the Psychonomic Society, Toronto.Google Scholar
  49. Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s guide. New York: Cambridge University Press.Google Scholar
  50. Matsuda, F., & Matsuda, M. (1979). Effects of spatial separation as a cue of time estimation in children and adults. Japanese Psychological Research, 21, 132–138.Google Scholar
  51. Matsuda, F., & Matsuda, M. (1981). The anti-kappa effect in successively presented stimuli: A developmental study. Japanese Psychological Research, 23, 9–17.Google Scholar
  52. McAuley, J. D., & Jones, M. R. (2003). Modeling effects of rhythmic context on perceived duration: A comparison of interval and entrainment approaches to short-interval timing. Journal of Experimental Psychology: Human Perception & Performance, 29, 1102–1125. doi:10.1037/0096-1523.29.6.1102CrossRefGoogle Scholar
  53. Peretz, I. (2006). The nature of music from a biological perspective. Cognition, 100, 1–32. doi:10.1016/j.cognition.2005.11.004PubMedCrossRefGoogle Scholar
  54. Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6, 688–691. doi:10.1038/nn1083PubMedCrossRefGoogle Scholar
  55. Price-Williams, D. R. (1954). The kappa effect. Nature, 173, 363–364. doi:10.1038/173363a0PubMedCrossRefGoogle Scholar
  56. Rusconi, E., Kwan, B., Giordano, B. L., Umiltà, C., & Butterworth, B. (2006). Spatial representation of pitch height: The SMARC effect. Cognition, 99, 113–129. doi:10.1016/j.cognition.2005.01.004PubMedCrossRefGoogle Scholar
  57. Sarrazin, J.-C., Giraudo, M.-D., Pailhous, J., & Bootsma, R. J. (2004). Dynamics of balancing space and time in memory: The tau and kappa effects revisited. Journal of Experimental Psychology: Human Perception & Performance, 30, 411–430. doi:10.1037/0096-1523.30.3.411CrossRefGoogle Scholar
  58. Sarrazin, J.-C., Giraudo, M.-D., & Pittenger, J. B. (2007). Tau and kappa effects in physical space: The case of audition. Psychological Research, 71, 201–218. doi:10.1007/s00426-005-0019-1PubMedCrossRefGoogle Scholar
  59. Shepard, R. N. (1984). Ecological constraints on internal representation: Resonant kinematics of perceiving, imagining, thinking, and dreaming. Psychological Review, 91, 417–447. doi:10.1037/0033-295X.91.4.417PubMedCrossRefGoogle Scholar
  60. Shigeno, S. (1986). The auditory tau and kappa effects for speech and nonspeech stimuli. Perception & Psychophysics, 40, 9–19.CrossRefGoogle Scholar
  61. Shigeno, S. (1993). The interdependence of pitch and temporal judgments by absolute pitch processors. Perception & Psychophysics, 54, 682–692.CrossRefGoogle Scholar
  62. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–652.CrossRefGoogle Scholar
  63. Tramo, M., Shah, G. D., & Braida, L. D. (2002). Functional role of auditory cortex in frequency processing and pitch perception. Journal of Neurophysiology, 87, 122–139. doi:10.1152/jn.00104.1999PubMedGoogle Scholar
  64. Ward, W. D. (1982). Absolute pitch. In D. Deutsch (Ed.), The psychology of music (pp. 265–298). New York: Academic Press.Google Scholar
  65. Wilson, S. J., Pressing, J. L., & Wales, R. J. (2002). Modeling rhythmic function in a musician post-stroke. Neuropsychologia, 40, 1494–1505.PubMedCrossRefGoogle Scholar
  66. Yoblick, D. A., & Salvendy, G. (1970). Influence of frequency on the estimation of time for auditory, visual, and tactile modalities: The kappa effect. Journal of Experimental Psychology, 86, 157–164. doi:10.1037/h0029935PubMedCrossRefGoogle Scholar
  67. Zatorre, R. J. (1988). Pitch perception of complex tones and human temporal-lobe function. Journal of the Acoustical Society of America, 84, 566–572.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2009

Authors and Affiliations

  • Molly J. Henry
    • 1
  • J. Devin McAuley
    • 2
    Email author
  • Marta Zaleha
    • 1
  1. 1.Bowling Green State UniversityBowling Green
  2. 2.Department of PsychologyMichigan State UniversityEast Lansing

Personalised recommendations