Attention, Perception, & Psychophysics

, Volume 71, Issue 6, pp 1385–1398 | Cite as

Enhanced production and perception of musical pitch in tone language speakers

  • Peter Q. PfordresherEmail author
  • Steven Brown
Research Articles


Individuals differ markedly with respect to how well they can imitate pitch through singing and in their ability to perceive pitch differences. We explored whether the use of pitch in one’s native language can account for some of the differences in these abilities. Results from two studies suggest that individuals whose native language is a tone language, in which pitch contributes to word meaning, are better able to imitate (through singing) and perceptually discriminate musical pitch. These findings support the view that language acquisition fine-tunes the processing of critical auditory dimensions in the speech signal and that this fine-tuning can be carried over into nonlinguistic domains.


Language Group Note Error Absolute Pitch Language Speaker Interval Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amir, O., Amir, N., & Kishon-Rabin, L. (2003). The effect of superior auditory skills on vocal accuracy. Journal of the Acoustical Society of America, 113, 1102–1108. doi:10.1121/1.1536632PubMedCrossRefGoogle Scholar
  2. Ayotte, J., Peretz, I., & Hyde, K. (2002). Congenital amusia: A group study of adults afflicted with a music-specific disorder. Brain, 125, 238–251.PubMedCrossRefGoogle Scholar
  3. Boersma, P., & Weenink, D. (2008). Praat: Doing phonetics by computer (Version 5.0.25) [Computer program]. Retrieved May 31, 2008 from Scholar
  4. Bradshaw, E., & McHenry, M. A. (2005). Pitch discrimination and pitch matching abilities of adults who sing inaccurately. Journal of Voice, 19, 431–439.PubMedCrossRefGoogle Scholar
  5. Brown, S. (2000). The “musilanguage” model of music evolution. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 271–301). Cambridge, MA: MIT Press.Google Scholar
  6. Burns, E. M., & Ward, W. D. (1978). Categorical perception—phenomenon or epiphenomenon: Evidence from experiments in the perception of melodic musical intervals. Journal of the Acoustical Society of America, 63, 456–468.PubMedCrossRefGoogle Scholar
  7. Cruttenden, A. (1997). Intonation (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  8. Cuddy, L. L., Balkwill, L.-L., Peretz, I., & Holden, R. R. (2005). Musical difficulties are rare: A study of “tone deafness” among university students. In G. Avanzini, L. Lopez, S. Koelsch, & M. Majno (Eds.), The neurosciences and music II: From perception to performance (Annals of the New York Academy of Sciences, Vol. 1060, pp. 311–324). New York: New York Academy of Sciences.Google Scholar
  9. Dalla Bella, S., Giguère, J.-F., & Peretz, I. (2007). Singing proficiency in the general population. Journal of the Acoustical Society of America, 121, 1182–1189.PubMedCrossRefGoogle Scholar
  10. Dediu, D., & Ladd, D. R. (2007). Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and Microcephalin. Proceedings of the National Academy of Sciences, 104, 10944–10949.CrossRefGoogle Scholar
  11. Deliège, I. (1987). Grouping conditions in listening to music: An approach to Lerdahl and Jackendoff ’s grouping preference rules. Music Perception, 4, 325–360.Google Scholar
  12. Deutsch, D., Henthorn, T., & Dolson, M. (2004). Absolute pitch, speech, and tone language: Some experiments and a proposed framework. Music Perception, 21, 339–356.CrossRefGoogle Scholar
  13. Deutsch, D., Henthorn, T., Marvin, E., & Xu, H. (2006). Absolute pitch among American and Chinese consvervatory students: Prevalence differences, and evidence for a speech-related critical period. Journal of the Acoustical Society of America, 119, 719–722.PubMedCrossRefGoogle Scholar
  14. Galantucci, B., Fowler, C. A., & Turvey, M. T. (2006). The motor theory of speech perception reviewed. Psychonomic Bulletin & Review, 13, 361–377.CrossRefGoogle Scholar
  15. Gandour, J., Wong, D., Hsieh, L., Weinzapfel, B., Van Lackner, D., & Hutchins, G. D. (2000). A crosslinguistic PET study of tone perception. Journal of Cognitive Neuroscience, 12, 207–222.PubMedCrossRefGoogle Scholar
  16. Gandour, J., Wong, D., & Hutchins, G. (1998). Pitch processing in the human brain is influenced by language experience. NeuroReport, 9, 2115–2119.PubMedCrossRefGoogle Scholar
  17. Gibson, E. J. (1963). Perceptual learning. Annual Review of Psychology, 14, 29–56.PubMedCrossRefGoogle Scholar
  18. Hawkins, K. A., Faraone, S. V., Pepple, J. R., Seidmean, L., & Tsuang, M. T. (1990). WAIS—R validation of the Wonderlic Personnel Test as a brief intelligence measure in a psychiatric sample. Psychological Assessment, 2, 198–201.CrossRefGoogle Scholar
  19. Hickok, G., Buchsbaum, G., Humphries, C., & Muftuler, T. (2003). Auditory—motor interaction revealed by fMRI: Speech, music, and working memory in area Spt. Journal of Cognitive Neuroscience, 15, 673–682.PubMedGoogle Scholar
  20. Holleran, S., Jones, M. R., & Butler, D. (1995). Perceiving implied harmony: The influence of melodic and harmonic context. Journal of Experimental Psychology: Learning, Memory, & Cognition, 21, 737–753.CrossRefGoogle Scholar
  21. Jones, M. R. (1987). Dynamic pattern structure in music: Recent theory and research. Perception & Psychophysics, 41, 621–634.CrossRefGoogle Scholar
  22. Krumhansl, C. L. (1990). Cognitive foundations of musical pitch. New York: Oxford University Press.Google Scholar
  23. Levitin, D. J. (1994). Absolute memory for musical pitch: Evidence from the production of learned melodies. Perception & Psychophysics, 56, 414–423.CrossRefGoogle Scholar
  24. Levitin, D. J., & Rogers, S. E. (2005). Absolute pitch: Perception, coding, and controversies. Trends in Cognitive Sciences, 9, 26–33.PubMedCrossRefGoogle Scholar
  25. Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74, 431–461.PubMedCrossRefGoogle Scholar
  26. Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revisited. Cognition, 21, 1–36.PubMedCrossRefGoogle Scholar
  27. Loui, P., Guenther, F., Mathys, C., & Schlaug, G. (2008). Action—perception mismatch in tone-deafness. Current Biology, 18, R331-R332.PubMedCrossRefGoogle Scholar
  28. McCann, J., & Peppé, S. (2003). Prosody in autism spectrum disorders: A critical review. International Journal of Language & Communication Disorders, 38, 325–350.CrossRefGoogle Scholar
  29. Milenkovic, P. H. (2001). TF32 [Computer software and manual]. Retrieved January 7, 2005, from Scholar
  30. Narmour, E. (1990). The analysis and cognition of basic melodic structures: The implication—realization model. Chicago: University of Chicago Press.Google Scholar
  31. Patel, A. D. (2003). Language, music, syntax, and the brain. Nature Neuroscience, 6, 674–681.PubMedCrossRefGoogle Scholar
  32. Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press.Google Scholar
  33. Patel, A. D., Wong, M., Foxton, J., Lochy, A., & Peretz, I. (2008). Speech intonation perception deficits in musical tone deafness (congenital amusia). Music Perception, 25, 357–368.CrossRefGoogle Scholar
  34. Peretz, I., Ayotte, J., Zatorre, R. J., Mehler, J., Ahad, P., Penhune, V. B., & Jutras, B. (2002). Congenital amusia: A disorder of fine-grained pitch discrimination. Neuron, 33, 185–191.PubMedCrossRefGoogle Scholar
  35. Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6, 688–691.PubMedCrossRefGoogle Scholar
  36. Peretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56, 89–114.PubMedCrossRefGoogle Scholar
  37. Pfordresher, P. Q., & Brown, S. (2007). Poor-pitch singing in the absence of “tone deafness.” Music Perception, 25, 95–115.CrossRefGoogle Scholar
  38. Remez, R. E., Rubin, P. E., Berns, S. M., Pardo, J. S., & Lang, J. M. (1994). On the perceptual organization of speech. Psychological Review, 101, 129–156.PubMedCrossRefGoogle Scholar
  39. Schellenberg, E. G. (2003). Does exposure to music have beneficial side effects? In I. Peretz & R. J. Zatorre (Eds.), The cognitive neuroscience of music (pp. 430–448). New York: Oxford University Press.Google Scholar
  40. Schellenberg, E. G., & Peretz, I. (2007). Music, language and cognition: Unresolved issues. Trends in Cognitive Sciences, 12, 45–46.CrossRefGoogle Scholar
  41. Schellenberg, E. G., & Trehub, S. E. (2003). Good pitch memory is widespread. Psychological Science, 14, 262–266.PubMedCrossRefGoogle Scholar
  42. Schmidt, R. A., & Lee, T. D. (1999). Motor control and learning: A behavioral emphasis. Champaign, IL: Human Kinetics.Google Scholar
  43. Sloboda, J. A., Wise, K. J., & Peretz, I. (2005). Quantifying tone deafness in the general population. In G. Avanzini, L. Lopez, S. Koelsch, & M. Majno (Eds.), The neurosciences and music II: From perception to performance (Annals of the New York Academy of Sciences, Vol. 1060, pp. 255–261). New York: New York Academy of Sciences.Google Scholar
  44. Smith, J. D. (1997). The place of musical novices in music science. Music Perception, 14, 227–262.Google Scholar
  45. Smith, J. D., Kemler Nelson, D. G., Grohskopf, L. A., & Appleton, T. (1994). What child is this? What interval was that? Familiar tunes and music perception in novice listeners. Cognition, 52, 23–54.PubMedCrossRefGoogle Scholar
  46. Stagray, J. R., & Downs, D. (1993). Differential sensitivity for frequency among speakers of a tone and a nontone language. Journal of Chinese Linguistics, 21, 143–163.Google Scholar
  47. Stanley, E., Narayana, S., Pfordresher, P. Q., & Wicha, N. (2008). Advantage of tonal language speaking on pitch perception. Journal of Cognitive Neuroscience, 20 (Suppl. 1, p. 232).Google Scholar
  48. Takeuchi, A. H., & Hulse, S. H. (1993). Absolute pitch. Psychological Bulletin, 113, 345–361.PubMedCrossRefGoogle Scholar
  49. Todd, R., Boltz, M. G., & Jones, M. R. (1989). The MIDILAB auditory research system. Psychomusicology, 8, 17–30.Google Scholar
  50. Trout, J. D. (2001). The biological basis of speech: What to infer from talking to the animals. Psychological Review, 108, 523–549.PubMedCrossRefGoogle Scholar
  51. Ward, W. D. (1999). Absolute pitch. In D. Deutsch (Ed.), The psychology of music (2nd ed., pp. 265–298). San Diego: Academic Press.CrossRefGoogle Scholar
  52. Welch, G. F. (1979). Poor pitch singing: A review of the literature. Psychology of Music, 7, 50–58.CrossRefGoogle Scholar
  53. Wennerstrom, A. (2001). The music of everyday speech: Prosody and discourse analysis. New York: Oxford University Press.Google Scholar
  54. Wise, K. J., & Sloboda, J. A. (2008). Establishing an empirical profile of self-defined “tone deafness”: Perception, singing performance and self-assessment. Musicae Scientiae, 12, 3–23.Google Scholar
  55. Wong, P. C. M., Parsons, L. M., Martinez, M., & Diehl, R. L. (2004). The role of the insular cortex in pitch pattern perception: The effect of linguistic contexts. Journal of Neuroscience, 24, 9153–9160.PubMedCrossRefGoogle Scholar
  56. Xu, Y., Gandour, J. T., & Francis, A. L. (2006). Effects of language experience and stimulus complexity on the categorical perception of pitch direction. Journal of the Acoustical Society of America, 120, 1063–1074.PubMedCrossRefGoogle Scholar
  57. Yip, M. (2002). Tone. Cambridge: Cambridge University Press.Google Scholar
  58. Zurbriggen, E. L., Fontenot, D. L., & Meyer, D. E. (2006). Repre sentation and execution of vocal motor programs for expert singing of tonal melodies. Journal of Experimental Psychology: Human Perception & Performance, 32, 944–963.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2009

Authors and Affiliations

  1. 1.Department of PsychologyUniversity at BuffaloBuffalo
  2. 2.McMaster UniversityHamiltonCanada

Personalised recommendations