Skip to main content

Attention to faces modulates early face processing during low but not high face discriminability

Abstract

In the present study, we investigated whether attention to faces results in sensory gain modulation. Participants were cued to attend either to faces or to scenes in superimposed face—scene images for which face discriminability was manipulated parametrically. The face-sensitive N170 event-related potential component was used as a measure of early face processing. Attention to faces modulated N170 amplitude, but only when faces were not highly discriminable. Additionally, directing attention to faces modulated later processing (~230—300 msec) for all discriminability levels. These results demonstrate that attention to faces can modulate perceptual processing of faces at multiple stages of processing, including early sensory levels. Critically, the early attentional benefit is present only when the “face signal” (i.e., the perceptual quality of the face) in the environment is suboptimal.

References

  1. Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience, 15, 600–609.

    PubMed  Article  Google Scholar 

  2. Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8, 551–565.

    PubMed  Article  Google Scholar 

  3. Bentin, S., & Deouell, L. Y. (2000). Structural encoding and identification in face processing: ERP evidence for separate mechanisms. Cognitive Neuropsychology, 17, 35–54.

    PubMed  Article  Google Scholar 

  4. Carmel, D., & Bentin, S. (2002). Domain specificity versus expertise: Factors influencing distinct processing of faces. Cognition, 83, 1–29.

    PubMed  Article  Google Scholar 

  5. Cauquil, A. S., Edmonds, G. E., & Taylor, M. J. (2000). Is the facesensitive N170 the only ERP not affected by selective attention? NeuroReport, 11, 2167–2172.

    PubMed  Article  Google Scholar 

  6. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1990). Attentional modulation of neural processing of shape, color, and velocity in humans. Science, 248, 1556–1559.

    PubMed  Article  Google Scholar 

  7. Deffke, I., Sander, T., Heidenreich, J., Sommer, W., Curio, G., Trahms, L., & Lueschow, A. (2007). MEG/EEG sources of the 170-ms response to faces are co-localized in the fusiform gyrus. NeuroImage, 35, 1495–1501.

    PubMed  Article  Google Scholar 

  8. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.

    PubMed  Article  Google Scholar 

  9. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    PubMed  Article  Google Scholar 

  10. Dosher, B. A., & Lu, Z.-L. (2000a). Mechanism of perceptual attention in precuing of location. Vision Research, 40, 1269–1292.

    PubMed  Article  Google Scholar 

  11. Dosher, B. A., & Lu, Z.-L. (2000b). Noise exclusion in spatial attention. Psychological Science, 11, 139–146.

    PubMed  Article  Google Scholar 

  12. Downing, P., Liu, J., & Kanwisher, N. (2001). Testing cognitive models of visual attention with fMRI and MEG. Neuropsychologia, 39, 1329–1342.

    PubMed  Article  Google Scholar 

  13. Eimer, M. (2000a). Attentional modulations of event-related brain potentials sensitive to faces. Cognitive Neuropsychology, 17, 103–116.

    PubMed  Article  Google Scholar 

  14. Eimer, M. (2000b). Event-related brain potentials distinguish processing stages involved in face perception and recognition. Clinical Neurophysiology, 111, 694–705.

    PubMed  Article  Google Scholar 

  15. Ekstrom, L. B., Roelfsema, P. R., Arsenault, J. T., Bonmassar, G., & Vanduffel, W. (2008). Bottom-up dependent gating of frontal signals in early visual cortex. Science, 321, 414–417.

    PubMed  Article  Google Scholar 

  16. Farah, M. J. (1996). Is face recognition “special”? Evidence from neuropsychology. Behavioural Brain Research, 76, 181–189.

    PubMed  Article  Google Scholar 

  17. Farah, M. J., Wilson, K. D., Drain, H. M., & Tanaka, J. R. (1995). The inverted face inversion effect in prosopagnosia: Evidence for mandatory, face-specific perceptual mechanisms. Vision Research, 35, 2089–2093.

    PubMed  Article  Google Scholar 

  18. Fox, N. A., O’Mullane, B. A., & Reilly, R. B. (2005). VALID: A new practical audio-visual database, and comparative results. In T. Kanade, A. Jain, & N. K. Ratha (Eds.), Audio- and Video-Based Biometric Person Authentication, Proceedings, 3546, 777–786.

  19. Furey, M. L., Tanskanen, T., Beauchamp, M. S., Avikainen, S., Uutela, K., Hari, R., & Haxby, J. B. (2006). Dissociation of faceselective cortical responses by attention. Proceedings of the National Academy of Sciences, 103, 1065–1070.

    Article  Google Scholar 

  20. Gazzaley, A., Cooney, J. W., McEvoy, K., Knight, R. T., & D’Esposito, M. (2005). Top-down enhancement and suppression of the magnitude and speed of neural activity. Journal of Cognitive Neuroscience, 17, 507–517.

    PubMed  Article  Google Scholar 

  21. George, N., Evans, J., Fiori, N., Davidoff, J., & Renault, B. (1996). Brain events related to normal and moderately scrambled faces. Cognitive Brain Research, 4, 65–76.

    PubMed  Article  Google Scholar 

  22. Halgren, E., Raij, T., Marinkovic, K., Jousmäki, V., & Hari, R. (2000). Cognitive response profile of the human fusiform face area as determined by MEG. Cerebral Cortex, 10, 69–81.

    PubMed  Article  Google Scholar 

  23. Han, S. M., Dosher, B. A., & Lu, Z.-L. (2003). Object attention revisited: Identifying mechanisms and boundary conditions. Psychological Science, 14, 598–604.

    PubMed  Article  Google Scholar 

  24. Handy, T. C., & Mangun, G. R. (2000). Attention and spatial selection: Electrophysiological evidence for modulation by perceptual load. Perception & Psychophysics, 62, 175–186.

    Article  Google Scholar 

  25. Hawkins, H. L., Hillyard, S. A., Luck, S. J., Mouloua, M., Downing, C. J., & Woodward, D. P. (1990). Visual attention modulates signal detectability. Journal of Experimental Psychology: Human Perception & Performance, 16, 802–811.

    Article  Google Scholar 

  26. Hawkins, H. L., Shafto, M. G., & Richardson, K. (1988). Effects of target luminance and cue validity on the latency of visual detection. Perception & Psychophysics, 44, 484–492.

    Article  Google Scholar 

  27. Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences, 95, 781–787.

    Article  Google Scholar 

  28. Hillyard, S. A., & Mangun, G. R. (1987). Sensory gating as a physiological mechanism for visual selective attention. In R. Johnson, Jr., W. Rohrbaugh, & R. Parasuraman (Eds.), Current trends in event-related potential research (pp. 61–67). New York: Elsevier.

    Google Scholar 

  29. Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: Electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society of London B, 353, 1257–1270.

    Article  Google Scholar 

  30. Hopf, J. M., Boehler, C. N., Luck, S. J., Tsotsos, J. K., Heinze, H. J., & Schoenfeld, M. A. (2006). Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. Proceedings of the National Academy of Sciences, 103, 1053–1058.

    Article  Google Scholar 

  31. Itier, R. J., & Taylor, M. J. (2004). N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cerebral Cortex, 14, 132–142.

    PubMed  Article  Google Scholar 

  32. Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception & Performance, 21, 451–468.

    Article  Google Scholar 

  33. Lavie, N., & De Fockert, J. W. (2003). Contrasting effects of sensory limits and capacity limits in visual selective attention. Perception & Psychophysics, 65, 202–212.

    Article  Google Scholar 

  34. Lavie, N., Ro, T., & Russell, C. (2003). The role of perceptual load in processing distractor faces. Psychological Science, 14, 510–515.

    PubMed  Article  Google Scholar 

  35. Lavie, N., & Tsal, Y. (1994). Perceptual load as a major determinant of the locus of selection in visual attention. Perception & Psychophysics, 56, 183–197.

    Article  Google Scholar 

  36. Lepsien, J., & Nobre, A. C. (2007). Attentional modulation of object representations in working memory. Cerebral Cortex, 17, 2072–2083.

    PubMed  Article  Google Scholar 

  37. Liu, J., Higuchi, M., Marantz, A., & Kanwisher, N. (2000). The selectivity of the occipitotemporal M170 for faces. NeuroReport, 11, 337–341.

    PubMed  Article  Google Scholar 

  38. Lu, S. T., Hämäläinen, M. S., Hari, R., Ilmoniemi, R. J., Lounasmaa, O. V., Sams, M., & Vilkman, V. (1991). Seeing faces activates three separate areas outside the occipital visual cortex in man. Neuroscience, 43, 287–290.

    PubMed  Article  Google Scholar 

  39. Lu, Z.-L., & Dosher, B. A. (1998). External noise distinguishes attention mechanisms. Vision Research, 38, 1183–1198.

    PubMed  Article  Google Scholar 

  40. Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–42.

    PubMed  Google Scholar 

  41. Luck, S. J., Hillyard, S. A., Mouloua, M., Woldorff, M. G., Clark, V. P., & Hawkins, H. L. (1994). Effects of spatial cuing on luminance detectability: Psychophysical and electrophysiological evidence for early selection. Journal of Experimental Psychology: Human Perception & Performance, 20, 887–904.

    Article  Google Scholar 

  42. Lueschow, A., Sander, T., Boehm, S. G., Nolte, G., Trahms, L., & Curio, G. (2004). Looking for faces: Attention modulates early occipitotemporal object processing. Psychophysiology, 41, 350–360.

    PubMed  Article  Google Scholar 

  43. Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32, 4–18.

    PubMed  Article  Google Scholar 

  44. Mangun, G. R., & Hillyard, S. A. (1991). Modulations of sensoryevoked brain potentials indicate changes in perceptual processing during visuo-spatial priming. Journal of Experimental Psychology: Human Perception & Performance, 17, 1057–1074.

    Article  Google Scholar 

  45. Martinez-Trujillo, J. C., & Treue, S. (2002). Attentional modulation strength in cortical area MT depends on stimulus contrast. Neuron, 35, 365–370.

    PubMed  Article  Google Scholar 

  46. Minear, M., & Park, D. C. (2004). A lifespan database of adult facial stimuli. Behavior Research Methods, Instruments, & Computers, 36, 630–633.

    Article  Google Scholar 

  47. Müller, M. M., Andersen, S., Trujillo, N. J., Valdés-Sosa, P., Malinowski, P., & Hillyard, S. A. (2006). Feature-selective attention enhances color signals in early visual areas of the human brain. Proceedings of the National Academy of Sciences, 103, 14250–14254.

    Article  Google Scholar 

  48. O’Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401, 584–587.

    PubMed  Article  Google Scholar 

  49. Olmos, A., & Kingdom, F. A. A. (2004). McGill Calibrated Colour Image Database. http://tabby.vision.mcgill.ca.

  50. Reiss, J. E., & Hoffman, J. E. (2007). Disruption of early face recognition processes by object substitution masking. Visual Cognition, 15, 789–798.

    Article  Google Scholar 

  51. Reynolds, J. H., Pasternak, T., & Desimone, R. (2000). Attention increases sensitivity of V4 neurons. Neuron, 26, 703–714.

    PubMed  Article  Google Scholar 

  52. Roelfsema, P. R., Lamme, V. A. F., & Spekreijse, H. (1998). Objectbased attention in the primary visual cortex of the macaque monkey. Nature, 395, 376–381.

    PubMed  Article  Google Scholar 

  53. Rossion, B., Gauthier, I., Tarr, M. J., Despland, P., Bruyer, R., Linotte, S., & Crommelinck, M. (2000). The N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: An electrophysiological account of face-specific processes in the human brain. NeuroReport, 11, 69–74.

    PubMed  Article  Google Scholar 

  54. Schweinberger, S. R., Pickering, E. C., Jentzsch, I., Burton, A. M., & Kaufmann, J. M. (2002). Event-related brain potential evidence for a response of inferior temporal cortex to familiar face repetitions. Cognitive Brain Research, 14, 398–409.

    PubMed  Article  Google Scholar 

  55. Serences, J. T., Schwarzbach, J., Courtney, S. M., Golay, X., & Yantis, S. (2004). Control of object-based attention in human cortex. Cerebral Cortex, 14, 1346–1357.

    PubMed  Article  Google Scholar 

  56. Sim, T., Baker, S., & Bsat, M. (2003). The CMU pose, illumination, and expression database. IEEE Transactions on Pattern Analysis & Machine Intelligence, 25, 1615–1618.

    Article  Google Scholar 

  57. Slagter, H. A., Kok, A., Mol, N., & Kenemans, J. L. (2005). Spatiotemporal dynamics of top-down control: Directing attention to location and/or color as revealed by ERPs and source modeling. Cognitive Brain Research, 22, 333–348.

    PubMed  Article  Google Scholar 

  58. Tanaka, J., Luu, P., Weisbrod, M., & Kiefer, M.. (1999). Tracking the time course of object categorization using event-related potentials. NeuroReport, 10, 829–835.

    PubMed  Article  Google Scholar 

  59. Tsotsos, J. K., Culhane, S. M., Wai, W. Y. K., Lai, Y. H., Davis, N., & Nuflo, F. (1995). Modeling visual attention via selective tuning. Artificial Intelligence, 78, 507–545.

    Article  Google Scholar 

  60. Valdes-Sosa, M., Bobes, M. A., Rodriguez, V., & Pinilla, T. (1998). Switching attention without shifting the spotlight: Object-based attentional modulation of brain potentials. Journal of Cognitive Neuroscience, 10, 137–151.

    PubMed  Article  Google Scholar 

  61. Watanabe, S., Kakigi, R., Koyama, S., & Kirino, E. (1999). Human face perception traced by magneto- and electro-encephalography. Cognitive Brain Research, 8, 125–142.

    PubMed  Article  Google Scholar 

  62. Williford, T., & Maunsell, J. H. R. (2006). Effects of spatial attention on contrast response functions in macaque area V4. Journal of Neurophysiology, 96, 40–54.

    PubMed  Article  Google Scholar 

  63. Wojciulik, E., Kanwisher, N., & Driver, J. (1998). Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. Journal of Neurophysiology, 79, 1574–1578.

    PubMed  Google Scholar 

  64. Yantis, S., & Serences, J. T. (2003). Cortical mechanisms of spacebased and object-based attentional control. Current Opinion in Neurobiology, 13, 187–193.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kartik K. Sreenivasan.

Additional information

K.K.S is supported by National Institute of Health Grant T32 MH017168

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sreenivasan, K.K., Goldstein, J.M., Lustig, A.G. et al. Attention to faces modulates early face processing during low but not high face discriminability. Attention, Perception, & Psychophysics 71, 837–846 (2009). https://doi.org/10.3758/APP.71.4.837

Download citation

Keywords

  • Spatial Attention
  • Stimulus Type
  • Attention Condition
  • Face Processing
  • N170 Amplitude