Cognitive, Affective, & Behavioral Neuroscience

, Volume 9, Issue 4, pp 389–397 | Cite as

Affective processing within 1/10th of a second: High arousal is necessary for early facilitative processing of negative but not positive words

  • Markus J. Hofmann
  • Lars Kuchinke
  • Sascha Tamm
  • Melissa L. H. Võ
  • Arthur M. Jacobs
Article

Abstract

Lexical decisions to high- and low-arousal negative words and to low-arousal neutral and positive words were examined in an event-related potentials (ERP) study. Reaction times to positive and high-arousal negative words were shorter than those to neutral (low-arousal) words, whereas those to low-arousal negative words were longer. A similar pattern was observed in an early time window of the ERP response: Both positive and high-arousal negative words elicited greater negative potentials in a time frame of 80 to 120 msec after stimulus onset. This result suggests that arousal has a differential impact on early lexical processing of positive and negative words. Source localization in the relevant time frame revealed that the arousal effect in negative words is likely to be localized in a left occipito-temporal region including the middle temporal and fusiform gyri. The ERP arousal effect appears to result from early lexico-semantic processing in high-arousal negative words.

References

  1. Baayen, R., Piepenbrock, R., & Gulikers, L. (1995). The CELEX Lexical Database (Release 2) [CD-ROM]. Philadelphia: University of Pennsylvania, Linguistic Data Consortium.Google Scholar
  2. Bernat, E., Bunce, S., & Shevrinc, H. (2001). Event-related brain potentials differentiate positive and negative mood adjectives during both supraliminal and subliminal visual processing. International Journal of Psychophysiology, 42, 11–34. doi:10.1016/S0167-8760(01)00133-7PubMedCrossRefGoogle Scholar
  3. Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Stimuli, instruction manual, and affective ratings (Tech. Rep. C-1). University of Florida, Gainesville, Center for Research in Psychophysiology.Google Scholar
  4. Carretié, L., Hinojosa, J. A., Martín-Loeches, M., Mercado, F., & Tapia, M. (2004). Automatic attention to emotional stimuli: Neural correlates. Human Brain Mapping, 22, 290- 299. doi:10.1002/ hbm.2003PubMedCrossRefGoogle Scholar
  5. Dambacher, M., Kliegl, R., Hofmann, M., & Jacobs, A. M. (2006). Frequency and predictability effects on event-related potentials during reading. Brain Research, 1084, 89–103. doi:10.1016/ j.brainres.2006.02.010PubMedCrossRefGoogle Scholar
  6. Dehaene, S., Le Clec’H, G., Poline, J., Le Bihan, D., & Cohen, L. (2002). The visual word form area: A prelexical representation of visual words in the fusiform gyrus. NeuroReport, 13, 321. doi:10.1097/ 00001756-200203040-00015PubMedCrossRefGoogle Scholar
  7. Devlin, J. T., Jamison, H. L., Gonnerman, L. M., & Matthews, P. M. (2006). The role of the posterior fusiform gyrus in read ing. Journal of Cognitive Neuroscience, 18, 911–922. doi:10.1162/ jocn.2006.18.6.911PubMedCrossRefGoogle Scholar
  8. Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating? Behavioral & Brain Sciences, 11, 357–427.CrossRefGoogle Scholar
  9. Geday, J., Gjedde, A., Boldsen, A.-S., & Kupersa, R. (2003). Emotional valence modulates activity in the posterior fusiform gyrus and inferior medial prefrontal cortex in social perception. NeuroImage, 18, 675–684. doi:10.1016/S1053-8119(02)00038-1PubMedCrossRefGoogle Scholar
  10. Graf, R., Nagler, M., & Jacobs, A. M. (2005). Factor analysis of 57 variables in visual word recognition. Zeitschrift für Psychologie, 213, 205–218. doi:10.1026/0044-3409.213.4.20CrossRefGoogle Scholar
  11. Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review, 103, 518–565.PubMedCrossRefGoogle Scholar
  12. Hackley, S. A., & Valle-Inclán, F. (1999). Accessory stimulus effects on response selection: Does arousal speed decision making? Journal of Cognitive Neuroscience, 11, 321–329. doi:10.1162/ 089892999563427PubMedCrossRefGoogle Scholar
  13. Hauk, O., & Pulvermüller, F. (2004). Effects of word length and frequency on the human event-related potential. Clinical Neurophysiology, 115, 1090–1103. doi:10.1016/j.clinph.2003.12.020PubMedCrossRefGoogle Scholar
  14. Herbert, C., Junghofer, M., & Kissler, J. (2008). Event related potentials to emotional adjectives during reading. Psychophysiology, 45, 487–498. doi:10.1111/j.1469-8986.2007.00638.xPubMedCrossRefGoogle Scholar
  15. Hinojosa, J. A., Carretié, L., Valcárcel, M. A., Méndez-Bértolo, C., & Pozo, M. A. (2009). Electrophysiological differences in the processing of affective information in words and pictures. Cognitive, Affective, & Behavioral Neuroscience, 9, 173–189. doi:10.3758/CABN.9.2.173CrossRefGoogle Scholar
  16. Hinojosa, J. A., Martín-Loeches, M., & Rubia, F. J. (2001). Eventrelated potentials and semantics: An overview and an integrative proposal. Brain & Language, 78, 128–139. doi:10.1006/brln.2001.2455CrossRefGoogle Scholar
  17. Hofmann, M. J., Stenneken, P., Conrad, M., & Jacobs, A. (2007). Sublexical frequency measures for orthographic and phonological units in German. Behavior Research Methods, 39, 620–629.PubMedCrossRefGoogle Scholar
  18. Kissler, J., Herbert, C., Peyk, P., & Junghofer, M. (2007). Buzzwords: Early cortical responses to emotional words during reading. Psychological Science, 18, 475–480. doi:10.1111/j.1467-9280.2007.01924.xPubMedCrossRefGoogle Scholar
  19. Kissler, J., Herbert, C., Winkler, I., & Junghofer, M. (2009). Emotion and attention in visual word processing—An ERP study. Biological Psychology, 80, 75–83. doi:10.1016/j.biopsycho.2008.03.004PubMedCrossRefGoogle Scholar
  20. Kuchinke, L. (2007). Implicit and explicit recognition of emotionally valenced words. Unpublished doctoral dissertation, Free University Berlin.Google Scholar
  21. Kuchinke, L., Jacobs, A., Grubich, C., Võ, M., Conrad, M., & Herrmann, M. (2005). Incidental effects of emotional valence in single word processing: An fMRI study. NeuroImage, 28, 1022–1032. doi:10.1016/j.neuroimage.2005.06.050PubMedCrossRefGoogle Scholar
  22. Kuchinke, L., Võ, M. L.-H., Hofmann, M., & Jacobs, A. (2007). Pupillary responses during lexical decisions vary with word frequency but not emotional valence. International Journal of Psychophysiology, 65, 132–140. doi:10.1016/j.ijpsycho.2007.04.004PubMedCrossRefGoogle Scholar
  23. Larsen, R. J., Mercer, K. A., Balota, D. A., & Strube, M. J. (2008). Not all negative words slow down lexical decision and naming speed: Importance of word arousal. Emotion, 8, 445–452. doi:10.1037/1528-3542.8.4.445CrossRefGoogle Scholar
  24. LeDoux, J. (1996). The emotional brain. New York: Simon & Schu ster.Google Scholar
  25. MacKay, D., Shafto, M., Taylor, J., Marian, D., Abrams, L., & Dyer, J. (2004). Relations between emotion, memory, and attention: Evidence from taboo Stroop, lexical decision, and immediate memory tasks. Memory & Cognition, 32, 474–488. doi:10.1080/ 01690960042000148CrossRefGoogle Scholar
  26. Maratos, E. J., Allan, K., & Rugg, M. D. (2000). Recognition memory for emotionally negative and neutral words: An ERP study. Neuropsychologia, 38, 1452–1465. doi:10.1016/S0028-3932(00)00061-0PubMedCrossRefGoogle Scholar
  27. McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: Expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7, 293–299. doi:10.1016/S1364-6613(03)00134-7PubMedCrossRefGoogle Scholar
  28. McNeely, H. E., Dywan, J., & Segalowitz, S. J. (2004). ERP indices of emotionality and semantic cohesiveness during recognition judgments. Psychophysiology, 41, 117–129. doi:10.1111/j.1469-8986.2003.00137.xPubMedCrossRefGoogle Scholar
  29. Nakic, M., Smith, B., Busis, S., Vythilingam, M., & Blair, R. (2006). The impact of affect and frequency on lexical decision: The role of the amygdala and inferior frontal cortex. NeuroImage, 31, 1752–1761. doi:10.1016/j.neuroimage.2006.02.022PubMedCrossRefGoogle Scholar
  30. Onton, J., Westerfield, M., Townsend, J., & Makeig, S. (2006). Imaging human EEG dynamics using independent component analysis. Neuroscience & Biobehavioral Reviews, 30, 808–822. doi:10.1016/ j.neubiorev.2006.06.007CrossRefGoogle Scholar
  31. Ortigue, S., Michel, C. M., Murray, M. M., Mohr, C., Carbonnel, S., & Landis, T. (2004). Electrical neuroimaging reveals early generator modulation to emotional words. NeuroImage, 21, 1242–1251. doi:10.1016/j.neuroimage.2003.11.007PubMedCrossRefGoogle Scholar
  32. Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning. Urbana: University of Illinois Press.Google Scholar
  33. Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods & Findings in Experimental & Clinical Pharmacology, 24(Suppl. D), 5–12.Google Scholar
  34. Penolazzi, B., Hauk, O., & Pulvermüller, F. (2007). Early semantic context integration and lexical access as revealed by event-related brain potentials. Biological Psychology, 74, 374–388. doi:10.1016/ j.biopsycho.2006.09.008PubMedCrossRefGoogle Scholar
  35. Pizzagalli, D. A., Lehmann, D., Hendrick, A. M., Regard, M., Pascual-Marqui, R. D., & Davidson, R. J. (2002). Affective judgments of faces modulate early activity (∼160 msec) within the Fusiform Gyri. NeuroImage, 16, 663–677. doi:10.1111/1469-8986.00112PubMedCrossRefGoogle Scholar
  36. Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy, 197, 335–359.PubMedCrossRefGoogle Scholar
  37. Price, C. J., & Devlin, C. (2003). The myth of the visual word form area. NeuroImage, 19, 473–481. doi:10.1016/S1053-8119(03)00084-3PubMedCrossRefGoogle Scholar
  38. Scott, G. G., O’Donnell, P. J., Leuthold, H., & Sereno, S. C. (2009). Early emotion word processing: Evidence from event related potentials. Biological Psychology, 80, 95–104. doi:10.1016/ j.biopsycho.2008.03.010PubMedCrossRefGoogle Scholar
  39. Sereno, S. C., & Rayner, K. (2003). Measuring word recognition in reading: Eye movements and event-related potentials. Trends in Cognitive Sciences, 7, 489–493. doi:10.1016/j.tics.2003.09.010PubMedCrossRefGoogle Scholar
  40. Siegle, G., Ingram, R., & Matt, G. (2002). Affective interference: An explanation for negative attention biases in dysphoria? Cognitive Therapy & Research, 26, 73–87. doi:10.1023/A:1013893705009CrossRefGoogle Scholar
  41. Skrandies, W. (1998). Evoked potential correlates of semantic meaning- A brain mapping study. Cognitive Brain Research, 6, 173–183. doi:10.1016/S0926-6410(97)00033-5PubMedCrossRefGoogle Scholar
  42. Talmi, D., & Moscovitch, M. (2004). Can semantic relatedness explain the enhancement of memory for emotional words? Memory & Cognition, 32, 742–751.CrossRefGoogle Scholar
  43. Thomas, L. A., & LaBar, K. S. (2005). Emotional arousal enhances word repetition priming. Cognition & Emotion, 19, 1027–1047. doi:10.1080/02699930500172440CrossRefGoogle Scholar
  44. Võ, M. L.-H., Conrad, M., Kuchinke, L., Urton, K., Hofmann, M. J., & Jacobs, A. M. (2009). The Berlin Affective Word List Reloaded (BAWL-R). Behavior Research Methods, 41, 534–539. doi:10.3758/ BRM.41.2.534PubMedCrossRefGoogle Scholar
  45. Võ, M. L.-H., Jacobs, A. M., Kuchinke, L., Hofmann, M., Conrad, M., Schacht, A., & Hutzler, F. (2008). The coupling of emotion and cognition in the eye: Introducing the pupil old/new effect. Psychophysiology, 45, 130–140. doi:10.1111/j.1469-8986.2007.00606.xPubMedCrossRefGoogle Scholar
  46. Williamson, S., Harpur, T., & Hare, R. (1991). Abnormal processing of affective words by psychopaths. Psychophysiology, 28, 260–273.PubMedCrossRefGoogle Scholar
  47. Wundt, W. (1896). Grundriss der Psychologie [Fundamentals of psychology]. Leipzig: Engelmann.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2009

Authors and Affiliations

  • Markus J. Hofmann
    • 1
  • Lars Kuchinke
    • 1
  • Sascha Tamm
    • 1
  • Melissa L. H. Võ
    • 2
  • Arthur M. Jacobs
    • 1
  1. 1.Department of PsychologyFree University BerlinBerlinGermany
  2. 2.University of EdinburghEdinburghScotland

Personalised recommendations