Advertisement

Lexicosemantic, affective, and distributional norms for 1,000 Dutch adjectives

  • Steven VerheyenEmail author
  • Simon De Deyne
  • Sarah Linsen
  • Gert Storms
Article

Abstract

The research of the word is still very much the research of the noun. Adjectives have been largely overlooked, despite being the second-largest word class in many languages and serving an important communicative function, because of the rich, nuanced qualifications they afford. Adjectives are also ideally suited to study the interface between cognition and emotion, as they naturally cover the entire range of lexicosemantic variables such as imageability (infinitegreen), and affective variables such as valence (sadhappy). We illustrate this by showing how the centrality of words in the mental lexicon varies as a function of the words’ affective dimensions, using newly collected norms for 1,000 Dutch adjectives. The norms include the lexicosemantic variables age of acquisition, familiarity, concreteness, and imageability; the affective variables valence, arousal, and dominance; and a variety of distributional variables, including network statistics resulting from a large-scale word association study. The norms are freely available from https://osf.io/nyg8v/, for researchers studying adjectives specifically or for whom adjectives constitute convenient stimuli to study other topics, such as vagueness, inference, spatial cognition, or affective word processing.

Keywords

Age of acquisition Arousal Concreteness Dominance Familiarity Imageability Valence 

Notes

References

  1. Altarriba, J., Bauer, L. M., & Benvenuto, C. (1999). Concreteness, context availability, and imageability ratings and word associations for abstract, concrete, and emotion words. Behavior Research Methods, Instruments, & Computers, 31, 578–602. doi: https://doi.org/10.3758/bf03200738 CrossRefGoogle Scholar
  2. Anderson, N. H. (1968). Likableness ratings of 555 personality-trait words. Journal of Personality and Social Psychology, 9, 272–279. doi: https://doi.org/10.1037/h0025907 CrossRefGoogle Scholar
  3. Andrews, M., Vigliocco, G., & Vinson, D. P. (2009). Integrating experiential and distributional data to learn semantic representations. Psychological Review, 116, 463–498. doi: https://doi.org/10.1037/a0016261 CrossRefPubMedGoogle Scholar
  4. Baayen, R., Piepenbrock, R., & van Rijn, H. (1993). The CELEX lexical database [CD-ROM]. Philadelphia, PA: University of Pennsylvania, Linguistic Data Consortium.Google Scholar
  5. Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. In M. De Vega, A. M. Glenberg, & A. C. Graesser (Eds.), Symbols, embodiment, and meaning (pp. 245–283). Oxford, UK: Oxford University Press. doi: https://doi.org/10.1093/acprof:oso/9780199217274.003.0013 CrossRefGoogle Scholar
  6. Bernat, E., Bunce, S., & Shevrin, H. (2001). Event-related brain potentials differentiate positive and negative mood adjectives during both supraliminal and subliminal visual processing. International Journal of Psychophysiology, 42, 11–34. doi: https://doi.org/10.1016/s0167-8760(01)00133-7 CrossRefGoogle Scholar
  7. Berrian, R. W., Metzler, D. P., Kroll, N. E. A., & Clark-Meyers, G. M. (1979). Estimates of imagery, ease of definition, and animateness for 328 adjectives. Journal of Experimental Psychology: Human Learning and Memory, 5, 435–447. doi: https://doi.org/10.1037/0278-7393.5.4.435 CrossRefGoogle Scholar
  8. Bianchi, I., Savardi, U., & Burro, R. (2011a). Perceptual ratings of opposite spatial properties: Do they lie on the same dimension? Acta Psychologica, 138, 405–418. doi: https://doi.org/10.1016/j.actpsy.2011.08.003 CrossRefPubMedGoogle Scholar
  9. Bianchi, I., Savardi, U., & Kubovy, M. (2011b). Dimensions and their poles: A metric and topological theory of opposites. Language and Cognitive Processes, 26, 1232–1265. doi: https://doi.org/10.1080/01690965.2010.520943 CrossRefGoogle Scholar
  10. Bird, H., Franklin, S., & Howard, D. (2001). Age of acquisition and imageability ratings for a large set of words, including verbs and function words. Behavior Research Methods, Instruments, & Computers, 33, 73–79. doi: https://doi.org/10.3758/bf03195349 CrossRefGoogle Scholar
  11. Boucher, J., & Osgood, C. E. (1969). The Pollyanna hypothesis. Journal of Verbal Learning and Verbal Behaviour, 8, 1–8. doi: https://doi.org/10.1016/s0022-5371(69)80002-2 CrossRefGoogle Scholar
  12. Brysbaert, M., Stevens, M., De Deyne, S., Voorspoels, W., & Storms, G. (2014a). Norms of age of acquisition and concreteness for 30,000 Dutch words. Acta Psychologica, 150, 80–84. doi: https://doi.org/10.1016/j.actpsy.2014.04.010 CrossRefPubMedGoogle Scholar
  13. Brysbaert, M., Stevens, M., Mandera, P., & Keuleers, E. (2016). The impact of word prevalence on lexical decision times: Evidence from the Dutch Lexicon Project 2. Journal of Experimental Psychology: Human Perception and Performance, 42, 441–458. doi: https://doi.org/10.1037/xhp0000159 CrossRefPubMedGoogle Scholar
  14. Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014b). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46, 904–911. doi: https://doi.org/10.3758/s13428-013-0403-5 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Citron, F. M. M., Weekes, B. S., & Ferstl, E. C. (2014). How are affective word ratings related to lexicosemantic properties? Evidence from the Sussex Affective Word List. Applied Psycholinguistics, 35, 313–331. doi: https://doi.org/10.1017/s0142716412000409 CrossRefGoogle Scholar
  16. Clark, J. M., & Paivio, A. (2004). Extensions of the Paivio, Yuille, and Madigan (1968) norms. Behavior Research Methods, Instruments, & Computers, 36, 371–383. doi: https://doi.org/10.3758/bf03195584 CrossRefGoogle Scholar
  17. Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82, 407–428. doi: https://doi.org/10.1037/0033-295x.82.6.407 CrossRefGoogle Scholar
  18. Connell, L., & Lynott, D. (2012). Strength of perceptual experience predicts word processing performance better than concreteness or imageability. Cognition, 125, 452–465. doi: https://doi.org/10.1016/j.cognition.2012.07.010 CrossRefPubMedGoogle Scholar
  19. Cop, U., Dirix, N., Drieghe, D., & Duyck, W. (2017). Presenting GECO: An eyetracking corpus of monolingual and bilingual sentence reading. Behavior Research Methods, 49, 602–615. doi: https://doi.org/10.3758/s13428-016-0734-0 CrossRefPubMedGoogle Scholar
  20. Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695, 1–9. Google Scholar
  21. De Deyne, S., Navarro, D., Collell, G., & Perfors, A. (2018). Visual and affective grounding in language and mind. arXiv preprint. doi: https://doi.org/10.31234/osf.io/q97f8
  22. De Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., & Storms, G. (2019). The “Small World of Words” English word association norms for over 12,000 cue words. Behavior Research Methods, 51, 987–1006. doi: https://doi.org/10.3758/s13428-018-1115-7 CrossRefPubMedGoogle Scholar
  23. De Deyne, S., Navarro, D. J., Perfors, A., & Storms, G. (2016a). Structure at every scale: A semantic network account of the similarities between unrelated concepts. Journal of Experimental Psychology: General, 145, 1228–1254. doi: https://doi.org/10.1037/xge0000192 CrossRefGoogle Scholar
  24. De Deyne, S., Navarro, D. J., & Storms, G. (2013). Better explanations of lexical and semantic cognition using networks derived from continued rather than single word associations. Behavior Research Methods, 45, 480–498. doi: https://doi.org/10.3758/s13428-012-0260-7 CrossRefPubMedGoogle Scholar
  25. De Deyne, S., & Storms, G. (2008a). Word associations: Network and semantic properties. Behavior Research Methods, 40, 213–231. doi: https://doi.org/10.3758/brm.40.1.213 CrossRefPubMedGoogle Scholar
  26. De Deyne, S., & Storms, G. (2008b). Word associations: Norms for 1,424 Dutch words in a continuous task. Behavior Research Methods, 40, 198–205. doi: https://doi.org/10.3758/brm.40.1.198 CrossRefPubMedGoogle Scholar
  27. De Deyne, S., Verheyen, S., Ameel, E., Vanpaemel, W., Dry, M. J., Voorspoels, W., & Storms, G. (2008). Exemplar by feature applicability matrices and other Dutch normative data for semantic concepts. Behavior Research Methods, 40, 1030–1048. doi: https://doi.org/10.3758/brm.40.4.1030 CrossRefPubMedGoogle Scholar
  28. De Deyne, S., Verheyen, S., & Storms, G. (2015). The role of corpus size and syntax in deriving lexico-semantic representations for a wide range of concepts. Quarterly Journal of Experimental Psychology, 68, 1643–1664. doi: https://doi.org/10.1080/17470218.2014.994098 CrossRefGoogle Scholar
  29. De Deyne, S., Verheyen, S., & Storms, G. (2016b). Structure and organization of the mental lexicon: A network approach derived from syntactic dependency relations and word associations. In A. Mehler, A. Lücking, S. Banish, P. Blanchard, & B. Frank-Job (Eds.), Towards a theoretical framework for analyzing complex linguistic networks (pp. 47–79). Berlin, Germany: Springer. doi: https://doi.org/10.1007/978-3-662-47238-5_3 CrossRefGoogle Scholar
  30. De Deyne, S., Voorspoels, W., Verheyen, S., Navarro, D. J., & Storms, G. (2014). Accounting for graded structure in adjective categories with valence-based opposition relationships. Language and Cognitive Processes, 29, 568–583. doi: https://doi.org/10.1080/01690965.2013.794294 CrossRefGoogle Scholar
  31. Deese, J. (1966). The structure of associations in language and thought. Baltimore, MD: Johns Hopkins Press.Google Scholar
  32. Dirven, R., & Taylor, J. (1988). The conceptualisation of vertical space in English: The case of tall. In B. Rudzka-Ostyn (Ed.), Topics in cognitive linguistics (pp. 379–402). Amsterdam, The Netherlands: John Benjamins. doi: https://doi.org/10.1075/cilt.50.15dir CrossRefGoogle Scholar
  33. Dixon, R. (1982). Where have all the adjectives gone?. The Hague, The Netherlands: Mouton. doi: https://doi.org/10.1515/9783110822939 CrossRefGoogle Scholar
  34. Dodds, P. S., Clark, E. M., Desu, S., Frank, M. R., Reagan, A. J., Williams, J. R., . . . Danforth, C. M. (2015). Human language reveals a universal positivity bias. Proceedings of the National Academy of Sciences, 112, 2389–2394. doi: https://doi.org/10.1073/pnas.1411678112 CrossRefGoogle Scholar
  35. Dolan, R. J. (2002). Emotion, cognition, and behavior. Science, 298, 1191–1194. doi: https://doi.org/10.1126/science.1076358 CrossRefPubMedGoogle Scholar
  36. Estes, Z., & Adelman, J. S. (2008a). Automatic vigilance for negative words in lexical decision and naming: Comment on Larsen, Mercer, and Balota (2006). Emotion, 8, 441–444. doi: https://doi.org/10.1037/1528-3542.8.4.441 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Estes, Z., & Adelman, J. S. (2008b). Automatic vigilance for negative words is categorical and general. Emotion, 8, 453–457. doi: https://doi.org/10.1037/a0012887 CrossRefGoogle Scholar
  38. Gärdenfors, P. (2000). Conceptual spaces: The geometry of thought. Cambridge, MA: MIT Press. doi: https://doi.org/10.7551/mitpress/2076.001.0001 CrossRefGoogle Scholar
  39. Ghyselinck, M., Custers, R., & Brysbaert, M. (2003). Age-of-acquisition rations for 2332 Dutch words from 49 different semantic categories. Psychologica Belgica, 43, 181–214.Google Scholar
  40. Ghyselinck, M., De Moor, W., & Brysbaert, M. (2000). Age-of-acquisition ratings for 2,816 Dutch four- and five-letter nouns. Psychologica Belgica, 40, 77–98.Google Scholar
  41. Gilet, A. L., & Jallais, C. (2011). Valence, arousal, and word associations. Cognition and Emotion, 25, 740–746. doi: https://doi.org/10.1080/02699931.2010.500480 CrossRefPubMedGoogle Scholar
  42. Gilhooly, K. J., & Logie, R. H. (1980). Age-of-acquisition, imagery, concreteness, familiarity, and ambiguity measures for 1,944 words. Behavior Research Methods & Instrumentation, 12, 395–427. doi: https://doi.org/10.3758/bf03201693 CrossRefGoogle Scholar
  43. Gotzner, N., Solt, S., & Benz, A. (2018). Scalar diversity, negative strengthening, and adjectival semantics. Frontiers in Psychology, 9, 1659. doi: https://doi.org/10.3389/fpsyg.2018.01659
  44. Grühn, D., & Smith, J. (2008). Characteristics for 200 words rated by young and older adults: Age-dependent evaluations of German adjectives (AGE). Behavior Research Methods, 40, 1088–1097. doi: https://doi.org/10.3758/brm.40.4.1088 CrossRefGoogle Scholar
  45. Hampton, J. A. (2011). Concepts and Natural Language. In R. Belohlavek, & G. J. Klir (Eds.), Concepts and fuzzy logic (pp. 233–258). Cambridge, MA: MIT Press. doi: https://doi.org/10.7551/mitpress/8842.003.0011 CrossRefGoogle Scholar
  46. Harrell, F. E. (2001). Regression modeling strategies. New York, NY: Springer. doi: https://doi.org/10.1007/978-1-4757-3462-1 CrossRefGoogle Scholar
  47. Herbert, C., Kissler, J., Junghofer, M., Peyk, P., & Rockstroh, B. (2006). Processing of emotional adjectives: Evidence from startle EMG and ERPs. Psychophysiology, 43, 197–206. doi: https://doi.org/10.1111/j.1469-8986.2006.00385.x CrossRefPubMedGoogle Scholar
  48. Hermans, D., & De Houwer, J. (1994). Affective and subjective familiarity ratings of 740 Dutch words. Psychologica Belgica, 34, 115–139.Google Scholar
  49. Heyman, T., Van Akeren, L., Hutchison, K. A., & Storms, G. (2016). Filling the gaps: A speeded word fragment completion megastudy. Behavior Research Methods, 48, 1508–1527. doi: https://doi.org/10.3758/s13428-015-0663-3 CrossRefPubMedGoogle Scholar
  50. Hills, T., Maouene, J., Riordan, B., & Smith, L. (2010). The associative structure of language: Contextual diversity in early word learning. Journal of Memory and Language, 63, 259–273. doi: https://doi.org/10.1016/j.jml.2010.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hutchison, K. A. (2003). Is semantic priming due to association strength or feature overlap? A microanalytic review. Psychonomic Bulletin & Review, 10, 785–813. doi: https://doi.org/10.3758/bf03196544 CrossRefGoogle Scholar
  52. Johnson, R. C., & Lim, D. (1964). Personality variables in associative production. Journal of General Psychology, 71, 349–350.PubMedGoogle Scholar
  53. Kennedy, C. (2007). Vagueness and grammar: The semantics of relative and absolute gradable adjectives. Linguistics and Philosophy, 30, 1–45. doi: https://doi.org/10.1007/s10988-006-9008-0 CrossRefGoogle Scholar
  54. Keuleers, E., Brysbaert, M., & New, B. (2010a). SUBTLEX-NL: A new frequency measure for Dutch words based on film subtitles. Behavior Research Methods, 42, 643–650. doi: https://doi.org/10.3758/brm.42.3.643 CrossRefPubMedGoogle Scholar
  55. Keuleers, E., Diependaele, K., & Brysbaert, M. (2010b). Practice effects in large-scale visual word recognition studies: A lexical decision study on 14,000 Dutch mono- and disyllabicwords and nonwords. Frontiers in Psychology, 1, 174:1–15. doi: https://doi.org/10.3389/fpsyg.2010.00174 CrossRefGoogle Scholar
  56. Keuleers, E., Stevens, M., Mandera, P., & Brysbaert, M. (2015). Word knowledge in the crowd: Measuring vocabulary size and word prevalence in a massive online experiment. Quarterly Journal of Experimental Psychology, 68, 1665–1692. doi: https://doi.org/10.1080/17470218.2015.1022560 CrossRefGoogle Scholar
  57. Koen, F. (1962). Polarization, m, and emotionality in words. Journal of Verbal Learning and Verbal Behavior, 1, 183–187. doi: https://doi.org/10.1016/s0022-5371(62)80027-9 CrossRefGoogle Scholar
  58. Kousta, S.-T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140, 14–34. doi: https://doi.org/10.1037/a0021446 CrossRefGoogle Scholar
  59. Kousta, S.-T., Vinson, D. P., & Vigliocco, G. (2009). Emotion words, regardless of polarity, have a processing advantage over neutral words. Cognition, 112, 473–481. doi: https://doi.org/10.1016/j.cognition.2009.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kuperman, V., Estes, Z., Brysbaert, M., & Warriner, A. B. (2014). Emotion and language: Valence and arousal affect word recognition. Journal of Experimental Psychology: General, 143, 1065–1081. doi: https://doi.org/10.1037/a0035669 CrossRefGoogle Scholar
  61. Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior Research Methods, 44, 978–990. doi: https://doi.org/10.3758/s13428-012-0210-4 CrossRefPubMedGoogle Scholar
  62. Langacker, R. W. (1987). Foundations of cognitive grammar: Vol. 1. Theoretical prerequisites. Stanford, CA: Stanford University Press.Google Scholar
  63. Larsen, R. J., Mercer, K. A., & Balota, D. A. (2006). Lexical characteristics of words used in emotional Stroop experiments. Emotion, 6, 62–72. doi: https://doi.org/10.1037/1528-3542.6.1.62 CrossRefPubMedGoogle Scholar
  64. Larsen, R. J., Mercer, K. A., Balota, D. A., & Strube, M. J. (2008). Not all negative words slow down lexical decision and naming speed: Importance of word arousal. Emotion, 8, 445–452. doi: https://doi.org/10.1037/1528-3542.8.4.445 CrossRefGoogle Scholar
  65. Lenci, A., Lebani, G. E., & Passaro, L. C. (2018). The emotions of abstract words: A distributional semantic analysis. Topics in Cognitive Science, 10, 550–572. doi: https://doi.org/10.1111/tops.12335 CrossRefPubMedGoogle Scholar
  66. Louwerse, M. M. (2011). Symbol interdependency in symbolic and embodied cognition. Topics in Cognitive Science, 3, 273–302. doi: https://doi.org/10.1111/j.1756-8765.2010.01106.x CrossRefPubMedGoogle Scholar
  67. Lynott, D., & Connell, L. (2009). Modality exclusivity norms for 423 object properties. Behavior Research Methods, 41, 558–564. doi: https://doi.org/10.3758/brm.41.2.558 CrossRefPubMedGoogle Scholar
  68. Lynott, D., & Connell, L. (2013). Modality exclusivity norms for 400 nouns: The relationship between perceptual experience and surface word form. Behavior Research Methods, 45, 516–526. doi: https://doi.org/10.3758/s13428-012-0267-0 CrossRefPubMedGoogle Scholar
  69. Mauss, I. B., & Robinson, M. D. (2009). Measures of emotion : A review. Cognition and Emotion, 23, 209–237. doi: https://doi.org/10.1080/02699930802204677 CrossRefPubMedGoogle Scholar
  70. Medin, D. L., Lynch, E. B., & Solomon, K. O. (2000). Are there kinds of concepts? Annual Review of Psychology, 51, 121–147. doi: https://doi.org/10.1146/annurev.psych.51.1.121 CrossRefPubMedGoogle Scholar
  71. Moffat, M., Siakaluk, P. D., Sidhu, D. M., & Pexman, P. M. (2015). Situated conceptualization and semantic processing: Effects of emotional experience and context availability in semantic categorization and naming tasks. Psychonomic Bulletin & Review, 22, 408–419. doi: https://doi.org/10.3758/s13423-014-0696-0 CrossRefGoogle Scholar
  72. Moors, A., De Houwer, J., Hermans, D., Wanmaker, S., van Schie, K., Van Harmelen, A. L., . . . Brysbaert, M. (2013). Norms of valence, arousal, dominance, and age of acquisition for 4,300 Dutch words. Behavior Research Methods, 45, 169–177. doi: https://doi.org/10.3758/s13428-012-0243-8 CrossRefGoogle Scholar
  73. Nelson, D. L., & McEvoy, C. L. (2000). What is this thing called frequency? Memory & Cognition, 28, 509–522. doi: https://doi.org/10.3758/BF03201241 CrossRefGoogle Scholar
  74. Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning. Urbana, IL: University of Illinois Press.Google Scholar
  75. Paivio, A., Yuille, J. C., & Madigan, S. A. (1968). Concreteness, imagery, and meaningfulness values for 925 nouns. Journal of Experimental Psychology, 76(1, Pt. 2), 1–25. doi: https://doi.org/10.1037/h0025327 CrossRefGoogle Scholar
  76. Pollio, H. (1964). Some semantic relations among word-associates. American Journal of Psychology, 77, 249–256. doi: https://doi.org/10.2307/1420131 CrossRefPubMedGoogle Scholar
  77. Quadflieg, S., Michel, C., Bukowski, H., & Samson, D. (2014). A database of psycholinguistic and lexical properties for French adjectives referring to human and/or nonhuman attributes. Canadian Journal of Experimental Psychology, 68, 67–76. doi: https://doi.org/10.1037/cep0000001 CrossRefPubMedGoogle Scholar
  78. R Development Core Team. (2007). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  79. Raskin, V., & Nirenburg, S. (1998). An applied ontological semantic microtheory of adjective meaning for natural language processing. Machine Translation, 13, 135–227. doi: https://doi.org/10.1023/A:1008039100776 CrossRefGoogle Scholar
  80. Rodríguez-Ferreiro, J., & Davies, R. (2019). The graded effect of valence on word recognition in Spanish. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45, 851–868. doi: https://doi.org/10.1037/xlm0000616 CrossRefPubMedGoogle Scholar
  81. Ruytenbeek, N., Verheyen, S., & Spector, B. (2017). Asymmetric inference towards the antonym: Experiments into the polarity and morphology of negated adjectives. Glossa, 2, 92:1–27. doi: https://doi.org/10.5334/gjgl.151 CrossRefGoogle Scholar
  82. Samsonovich, A. V., & Ascoli, G. A. (2010). Principal semantic components of language and the measurement of meaning. PLoS ONE, 5, e10921. doi: https://doi.org/10.1371/journal.pone.0010921 CrossRefPubMedGoogle Scholar
  83. Santos, A., Chaigneau, S. E., Simmons, W. K., & Barsalou, L. W. (2011). Property generation reflects word association and situated simulation. Language and Cognition, 3, 83–119. doi: https://doi.org/10.1515/langcog.2011.004 CrossRefGoogle Scholar
  84. Spearman, C. (1904). The proof and measurement of association between two things. American Journal of Psychology, 15, 72–101. doi: https://doi.org/10.2307/1412159 CrossRefGoogle Scholar
  85. Staats, A. W., & Staats, C. K. (1959). Meaning and m: Correlated but separate. Psychological Review, 66, 136–144. doi: https://doi.org/10.1037/h0047970 CrossRefPubMedGoogle Scholar
  86. Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. Cognitive Science, 29, 41–78. doi: https://doi.org/10.1207/s15516709cog2901_3 CrossRefPubMedGoogle Scholar
  87. Szalay, L. B., & Deese, J. (1978). Subjective meaning and culture: An assessment through word associations. Hillsdale, NJ: Erlbaum.Google Scholar
  88. Talmy, L. (2000). Toward a cognitive semantics: Concept structuring systems. Cambridge, MA: MIT Press. doi: https://doi.org/10.7551/mitpress/6847.001.0001 CrossRefGoogle Scholar
  89. Van der Goten, K., De Vooght, G., & Kemps, E. (1999). Concreteness and emotional valence ratings of 399 Dutch nouns. Psychologica Belgica, 39, 49–70.Google Scholar
  90. Vankrunkelsven, H., Verheyen, S., Storms, G., & De Deyne, S. (2018). Predicting lexical norms: A comparison between a word association model and text-based word co-occurrence models. Journal of Cognition, 1, 45. doi: https://doi.org/10.5334/joc.50 CrossRefPubMedPubMedCentralGoogle Scholar
  91. van Loon-Vervoorn, W. A. (1985). Voorstelbaarheidswaarden van Nederlandse woorden [Imageability ratings for Dutch words]. Lisse, The Netherlands: Swets & Zeitlinger.Google Scholar
  92. Van Rensbergen, B., De Deyne, S., & Storms, G. (2015a). Estimating affective word covariates using word association data. Behavior Research Methods, 48, 1644–1652. doi: https://doi.org/10.3758/s13428-015-0680-2 CrossRefGoogle Scholar
  93. Van Rensbergen, B., Storms, G., & De Deyne, S. (2015b). Examining assortativity in the mental lexicon: Evidence from word association data. Psychonomic Bulletin & Review, 22, 1717–1724. doi: https://doi.org/10.3758/s13423-015-0832-5 CrossRefGoogle Scholar
  94. Van Rooij, R. (2011). Vagueness and linguistics. In G. Ronzitti (Ed.), Vagueness: A guide (pp. 123–170). Dordrecht, The Netherlands: Springer. doi: https://doi.org/10.1007/978-94-007-0375-9_6 CrossRefGoogle Scholar
  95. Vigliocco, G., Meteyard, L., Andrews, M., & Kousta, S. (2009). Toward a theory of semantic representation. Language and Cognition, 1, 219–247. doi: https://doi.org/10.1515/langcog.2009.011 CrossRefGoogle Scholar
  96. Vinson, D., Ponari, M., & Vigliocco, G. (2014). How does emotional content affect lexical processing? Cognition & Emotion, 28, 737–746. doi: https://doi.org/10.1080/02699931.2013.851068 CrossRefGoogle Scholar
  97. Verheyen, S., & Egré, P. (2018). Typicality and graded membership in dimensional adjectives. Cognitive Science, 42, 2250–2286. doi: https://doi.org/10.1111/cogs.12649 CrossRefPubMedGoogle Scholar
  98. Võ, M. L.-H., Conrad, M., Kuchinke, L., Urton, K., Hofmann, M. J., & Jacobs, A. M. (2009). The Berlin Affective Word List Reloaded (BAWL-R). Behavior Research Methods, 41, 534–538. doi: https://doi.org/10.3758/brm.41.2.534 CrossRefGoogle Scholar
  99. Vogel, A. (2004). Swedish dimensional adjectives. Stockholm, Sweden: Almqvist & Wiksell.Google Scholar
  100. Wang, X., Wu, W., Ling, Z., Xu, Y., Fang, Y., Wang, X., . . . Bi, Y. (2017). Organizational principles of abstract words in the human brain. Cerebral Cortex, 28, 4305–4318. doi: https://doi.org/10.1093/cercor/bhx283 CrossRefGoogle Scholar
  101. Yap, M. J., & Seow, C. S. (2014). The influence of emotion on lexical processing: Insights from RT distributional analysis. Psychonomic Bulletin & Review, 21, 526–533. doi: https://doi.org/10.3758/s13423-013-0525-x CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Steven Verheyen
    • 1
    Email author
  • Simon De Deyne
    • 2
  • Sarah Linsen
    • 1
  • Gert Storms
    • 1
  1. 1.KU LeuvenLeuvenBelgium
  2. 2.University of MelbourneMelbourneAustralia

Personalised recommendations