Recognition times for 62 thousand English words: Data from the English Crowdsourcing Project

  • Paweł Mandera
  • Emmanuel Keuleers
  • Marc BrysbaertEmail author


We present a new dataset of English word recognition times for a total of 62 thousand words, called the English Crowdsourcing Project. The data were collected via an internet vocabulary test in which more than one million people participated. The present dataset is limited to native English speakers. Participants were asked to indicate which words they knew. Their response times were registered, although at no point were the participants asked to respond as quickly as possible. Still, the response times correlate around .75 with the response times of the English Lexicon Project for the shared words. Also, the results of virtual experiments indicate that the new response times are a valid addition to the English Lexicon Project. This not only means that we have useful response times for some 35 thousand extra words, but we now also have data on differences in response latencies as a function of education and age.


Megastudy Word recognition Lexical decision Crowdsourcing 



  1. Adelman, J. S., Marquis, S. J., Sabatos-DeVito, M. G., & Estes, Z. (2013). The unexplained nature of reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 1037–1053. CrossRefPubMedGoogle Scholar
  2. Aguasvivas, J., Carreiras, M., Brysbaert, M., Mandera, P., Keuleers, E., & Duñabeitia, J. A. (2018). SPALEX: A Spanish lexical decision database from a massive online data collection. Frontiers in Psychology, 9, 2156. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andrews, S. (1992). Frequency and neighborhood effects on lexical access: Lexical similarity or orthographic redundancy. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 234–254. CrossRefGoogle Scholar
  4. Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H., & Yap, M. J. (2004). Visual word recognition of single-syllable words. Journal of Experimental Psychology: General, 133, 283–316.CrossRefGoogle Scholar
  5. Balota, D. A., & Spieler, D. H. (1998). The utility of item level analyses in model evaluation: A reply to Seidenberg & Plaut (1998). Psychological Science, 9, 238–240.CrossRefGoogle Scholar
  6. Balota, D. A., Yap, M. J., Hutchison, K. A., & Cortese, M. J. (2013). Megastudies: What do millions (or so) of trials tell us about lexical processing? In J. S. Adelman (Ed.), Visual word recognition Volume 1: Models and methods, orthography and phonology (pp. 90–115). New York, NY: Psychology Press.Google Scholar
  7. Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., . . .,Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39, 445–459.CrossRefPubMedGoogle Scholar
  8. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berger, C. M., Crossley, S. A., & Kyle, K. (2019). Using native-speaker psycholinguistic norms to predict lexical proficiency and development in second-language production. Applied Linguistics, 40, 22–42. CrossRefGoogle Scholar
  10. Brysbaert, M., & Cortese, M. J. (2011). Do the effects of subjective frequency and age of acquisition survive better word frequency norms? Quarterly Journal of Experimental Psychology, 64, 545–559.CrossRefGoogle Scholar
  11. Brysbaert, M., Lagrou, E., & Stevens, M. (2017). Visual word recognition in a second language: A test of the lexical entrenchment hypothesis with lexical decision times. Bilingualism: Language and Cognition, 20, 530–548.CrossRefGoogle Scholar
  12. Brysbaert, M., Mandera, P., & Keuleers, E. (2018). The word frequency effect in word processing: An updated review. Current Directions in Psychological Science, 27, 45–50.CrossRefGoogle Scholar
  13. Brysbaert, M., Mandera, P., McCormick, S. F., & Keuleers, E. (2019). Word prevalence norms for 62,000 English lemmas. Behavior Research Methods, 51, 467–479.CrossRefPubMedGoogle Scholar
  14. Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41, 977–990.CrossRefPubMedGoogle Scholar
  15. Brysbaert, M., Stevens, M., Mandera, P., & Keuleers, E. (2016a). How many words do we know? Practical estimates of vocabulary size dependent on word definition, the degree of language input and the participant’s age. Frontiers in Psychology 7, 1116. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brysbaert, M., Stevens, M., Mandera, P., & Keuleers, E. (2016b). The impact of word prevalence on lexical decision times: Evidence from the Dutch Lexicon Project 2. Journal of Experimental Psychology: Human Perception and Performance, 42, 441–458.PubMedGoogle Scholar
  17. Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46, 904–911.CrossRefPubMedGoogle Scholar
  18. Chang, Y. N., Hsu, C. H., Tsai, J. L., Chen, C. L., & Lee, C. Y. (2016). A psycholinguistic database for traditional Chinese character naming. Behavior Research Methods, 48, 112–122.CrossRefPubMedGoogle Scholar
  19. Chateau, D., & Jared, D. (2003). Spelling–sound consistency effects in disyllabic word naming. Journal of Memory and Language, 48, 255–280.CrossRefGoogle Scholar
  20. Chen, Q., & Mirman, D. (2012). Competition and cooperation among similar representations: toward a unified account of facilitative and inhibitory effects of lexical neighbors. Psychological Review, 119, 417–430.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chetail, F., Balota, D., Treiman, R., & Content, A. (2015). What can megastudies tell us about the orthographic structure of English words? Quarterly Journal of Experimental Psychology, 68, 1519–1540.CrossRefGoogle Scholar
  22. Cohen-Shikora, E. R., & Balota, D. A. (2016). Visual word recognition across the adult lifespan. Psychology and Aging, 31, 488–502.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cohen-Shikora, E. R., Balota, D. A., Kapuria, A., & Yap, M. J. (2013). The past tense inflection project (PTIP): Speeded past tense inflections, imageability ratings, and past tense consistency measures for 2,200 verbs. Behavior Research Methods, 45, 151–159.CrossRefPubMedGoogle Scholar
  24. Connell, L., & Lynott, D. (2014). I see/hear what you mean: Semantic activation in visual word recognition depends on perceptual attention. Journal of Experimental Psychology: General, 143, 527–533. CrossRefGoogle Scholar
  25. Cop, U., Dirix, N., Drieghe, D., & Duyck, W. (2017). Presenting GECO: An eyetracking corpus of monolingual and bilingual sentence reading. Behavior Research Methods, 49, 602–615.CrossRefPubMedGoogle Scholar
  26. Cop, U., Keuleers, E., Drieghe, D., & Duyck, W. (2015). Frequency effects in monolingual and bilingual natural reading. Psychonomic Bulletin & Review, 22, 1216–1234.CrossRefGoogle Scholar
  27. Cortese, M. J., Hacker, S., Schock, J., & Santo, J. B. (2015a). Is reading aloud performance in megastudies systematically influenced by the list context? Quarterly Journal of Experimental Psychology, 68, 1711–1722. CrossRefGoogle Scholar
  28. Cortese, M. J., Khanna, M. M., & Hacker, S. (2010). Recognition memory for 2,578 monosyllabic words. Memory, 18, 595–609. DOI: Scholar
  29. Cortese, M. J., Khanna, M. M., Kopp, R., Santo, J. B, Preston, K. S., & Van Zuiden, T. (2017). Participants shift response deadlines based on list difficulty during reading aloud megastudies, Memory & Cognition, 45, 589–599.CrossRefGoogle Scholar
  30. Cortese, M. J., McCarty, D. P., & Schock, J. (2015b). A mega recognition memory study of 2897 disyllabic words. Quarterly Journal of Experimental Psychology, 68, 1489–1501. CrossRefGoogle Scholar
  31. Cortese, M. J., Yates, M., Schock, J., & Vilks, L. (2018). Examining word processing via a megastudy of conditional reading aloud. Quarterly Journal of Experimental Psychology, 71, 2295–2313.CrossRefGoogle Scholar
  32. Coxhead, A. (2000). A new academic word list. TESOL Quarterly, 34, 213–238.CrossRefGoogle Scholar
  33. Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating Amazon’s Mechanical Turk as a tool for experimental behavioral research. PLoS ONE, 8, e57410. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Davies, R., Barbón, A., & Cuetos, F. (2013). Lexical and semantic age-of-acquisition effects on word naming in Spanish. Memory & Cognition, 41, 297–311.CrossRefGoogle Scholar
  35. Davies, R. A., Arnell, R., Birchenough, J. M., Grimmond, D., & Houlson, S. (2017). Reading through the life span: Individual differences in psycholinguistic effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 1298–1338.PubMedGoogle Scholar
  36. Davis, C. J. (2010). The spatial coding model of visual word identification. Psychological Review, 117, 713–758.CrossRefPubMedGoogle Scholar
  37. Davis, C. J., & Taft, M. (2005). More words in the neighborhood: Interference in lexical decision due to deletion neighbors. Psychonomic Bulletin & Review, 12, 904–910.CrossRefGoogle Scholar
  38. Diependaele, K., Lemhöfer, K., & Brysbaert, M. (2013). The word frequency effect in first and second language word recognition: A lexical entrenchment account. Quarterly Journal of Experimental Psychology, 66, 843–863.CrossRefGoogle Scholar
  39. Dirix, N., Brysbaert, M., & Duyck, W. (2018). How well do word recognition measures correlate? Effects of language context and repeated presentations. Behavior Research Methods.
  40. Dufau, S., Grainger, J., Midgley, K. J., & Holcomb, P. J. (2015). A thousand words are worth a picture: Snapshots of printed-word processing in an event-related potential megastudy. Psychological Science, 26, 1887–1897.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ernestus, M., & Cutler, A. (2015). BALDEY: A database of auditory lexical decisions. Quarterly Journal of Experimental Psychology, 68, 1469–1488.CrossRefGoogle Scholar
  42. Ferrand, L., Brysbaert, M., Keuleers, E., New, B., Bonin, P., Méot, A., . . . Pallier, C. (2011). Comparing word processing times in naming, lexical decision, and progressive demasking: Evidence from Chronolex. Frontiers in Psychology, 2, 306. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ferrand, L., Méot, A., Spinelli, E., New, B., Pallier, C., Bonin, P., . . . Grainger, J. (2018). MEGALEX: A megastudy of visual and auditory word recognition. Behavior Research Methods, 50, 1285–1307.CrossRefPubMedGoogle Scholar
  44. Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin, P., Méot, A., . . . Pallier, C. (2010). The French Lexicon Project: Lexical decision data for 38,840 French words and 38,840 pseudowords. Behavior Research Methods, 42, 488–496.CrossRefPubMedGoogle Scholar
  45. Ferré, P., & Brysbaert, M. (2017). Can Lextale-Esp discriminate between groups of highly proficient Catalan-Spanish bilinguals with different language dominances? Behavior Research Methods, 49, 717–723.CrossRefPubMedGoogle Scholar
  46. Fischer, M. H., & Zwaan, R. A. (2008). Embodied language: A review of the role of the motor system in language comprehension. Quarterly Journal of Experimental Psychology, 61, 825–850.CrossRefGoogle Scholar
  47. Frank, S. L., Monsalve, I. F., Thompson, R. L., & Vigliocco, G. (2013). Reading time data for evaluating broad-coverage models of English sentence processing. Behavior Research Methods, 45, 1182–1190.CrossRefPubMedGoogle Scholar
  48. Frank, S. L., Otten, L. J., Galli, G., & Vigliocco, G. (2015). The ERP response to the amount of information conveyed by words in sentences. Brain and Language, 140, 1–11.CrossRefPubMedGoogle Scholar
  49. Futrell, R., Gibson, E., Tily, H. J., Blank, I., Vishnevetsky, A., Piantadosi, S. T., & Fedorenko, E. (2018). The Natural Stories Corpus. In N. Calzolari, K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, . . . T. Tokunaga (Eds.), Proceedings of LREC 2018, Eleventh International Conference on Language Resources and Evaluation (pp. 76–82). Paris, France: European Language Resources Association. Available at
  50. Gerhand, S., & Barry, C. (1998). Word frequency effects in oral reading are not merely age-of-acquisition effects in disguise. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 267–283.Google Scholar
  51. Gimenes, M., & New, B. (2016). Worldlex: Twitter and blog word frequencies for 66 languages. Behavior Research Methods, 48, 963–972.CrossRefPubMedGoogle Scholar
  52. Goh, W. D., Yap, M. J., Lau, M. C., Ng, M. M., & Tan, L. C. (2016). Semantic richness effects in spoken word recognition: A lexical decision and semantic categorization megastudy. Frontiers in psychology, 7, 976.CrossRefPubMedPubMedCentralGoogle Scholar
  53. González-Nosti, M., Barbón, A., Rodríguez-Ferreiro, J., & Cuetos, F. (2014). Effects of the psycholinguistic variables on the lexical decision task in Spanish: A study with 2,765 words. Behavior Research Methods, 46, 517–525.CrossRefPubMedGoogle Scholar
  54. Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review, 103, 518–565.CrossRefPubMedGoogle Scholar
  55. Harrington, M., & Carey, M. (2009). The on-line Yes/No test as a placement tool. System, 37, 614–626.CrossRefGoogle Scholar
  56. Herdağdelen, A., & Marelli, M. (2017). Social media and language processing: How Facebook and Twitter provide the best frequency estimates for studying word recognition. Cognitive Science, 41, 976–995.CrossRefPubMedGoogle Scholar
  57. Heyman, T., Van Akeren, L., Hutchison, K. A., & Storms, G. (2016). Filling the gaps: A speeded word fragment completion megastudy. Behavior Research Methods, 48, 1508–1527.CrossRefPubMedGoogle Scholar
  58. Hubert, M., & Vandervieren, E. (2008). An adjusted boxplot for skewed distributions. Computational Statistics & Data Analysis, 52, 5186–5201.CrossRefGoogle Scholar
  59. Husain, S., Vasishth, S., & Srinivasan, N. (2015). Integration and prediction difficulty in Hindi sentence comprehension: Evidence from an eye-tracking corpus. Journal of Eye Movement Research, 8(2), 3:1–12.Google Scholar
  60. Hutchison, K. A., Balota, D. A., Neely, J. H., Cortese, M. J., Cohen-Shikora, E. R., Tse, C. S., . . . Buchanan, E. (2013). The semantic priming project. Behavior Research Methods, 45, 1099–1114.CrossRefPubMedGoogle Scholar
  61. Kang, S. H., Yap, M. J., Tse, C. S., & Kurby, C. A. (2011). Semantic size does not matter: “Bigger” words are not recognized faster. Quarterly Journal of Experimental Psychology, 64, 1041–1047.CrossRefGoogle Scholar
  62. Kessler, B., Treiman, R., & Mullennix, J. (2002). Phonetic biases in voice key response time measurements. Journal of Memory and Language, 47, 145–171.CrossRefGoogle Scholar
  63. Keuleers, E., & Balota, D. A. (2015). Megastudies, crowd-sourcing, and large datasets in psycholinguistics: An overview of recent developments. Quarterly Journal of Experimental Psychology, 68, 1457–1468.CrossRefGoogle Scholar
  64. Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. Behavior Research Methods, 42, 627–633.CrossRefPubMedGoogle Scholar
  65. Keuleers, E., Diependaele, K., & Brysbaert, M. (2010). Practice effects in large-scale visual word recognition studies: A lexical decision study on 14,000 Dutch mono- and disyllabic words and nonwords. Frontiers in Psychology, 1, 174. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project: Lexical decision data for 28,730 monosyllabic and disyllabic English words. Behavior Research Methods, 44, 287–304.CrossRefPubMedGoogle Scholar
  67. Keuleers, M., Stevens, M., Mandera, P., & Brysbaert, M. (2015). Word knowledge in the crowd: Measuring vocabulary size and word prevalence in a massive online experiment. Quarterly Journal of Experimental Psychology, 68, 1665–1692.CrossRefGoogle Scholar
  68. Kliegl, R., Nuthmann, A., & Engbert, R. (2006). Tracking the mind during reading: The influence of past, present, and future words on fixation durations. Journal of Experimental Psychology: General, 135, 12–35. CrossRefGoogle Scholar
  69. Kuperman, V., Estes, Z., Brysbaert, M., & Warriner, A. B. (2014). Emotion and language: Valence and arousal affect word recognition. Journal of Experimental Psychology: General, 143, 1065–1081.CrossRefGoogle Scholar
  70. Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30 thousand English words. Behavior Research Methods, 44, 978–990.CrossRefPubMedGoogle Scholar
  71. Laurinavichyute, A. K., Sekerina, I. A., Alexeeva, S., Bagdasaryan, K., & Kliegl, R. (2019). Russian Sentence Corpus: Benchmark measures of eye movements in reading in Russian. Behavior Research Methods, 51, 1161–1178. CrossRefPubMedGoogle Scholar
  72. Lee, C. Y., Hsu, C. H., Chang, Y. N., Chen, W. F., & Chao, P. C. (2015). The feedback consistency effect in Chinese character recognition: Evidence from a psycholinguistic norm. Language and Linguistics, 16, 535–554.CrossRefGoogle Scholar
  73. Lemhöfer, K., & Broersma, M. (2012). Introducing LexTALE: A quick and valid lexical test for advanced learners of English. Behavior Research Methods, 44, 325–343.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lemhöfer, K., Dijkstra, T., Schriefers, H., Baayen, R. H., Grainger, J., & Zwitserlood, P. (2008). Native language influences on word recognition in a second language: A megastudy. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 12–31.PubMedGoogle Scholar
  75. Liben-Nowell, D., Strand, J., Sharp, A., Wexler, T., & Woods, K. (2019). The danger of testing by selecting controlled subsets, with applications to spoken-word recognition. Journal of Cognition, 2, 2. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Liu, Y., Shu, H., & Li, P. (2007). Word naming and psycholinguistic norms: Chinese. Behavior Research Methods, 39, 192–198.CrossRefPubMedGoogle Scholar
  77. Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527.CrossRefGoogle Scholar
  78. Luke, S. G., & Christianson, K. (2018). The Provo Corpus: A large eye-tracking corpus with predictability norms. Behavior Research Methods, 50, 826–833.CrossRefPubMedGoogle Scholar
  79. Mainz, N., Shao, Z., Brysbaert, M., & Meyer, A. (2017). Vocabulary knowledge predicts lexical processing: Evidence from a group of participants with diverse educational backgrounds. Frontiers in Psychology, 8, 1164. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Mandera, P. (2016). Psycholinguistics on a large scale: Combining text corpora, megastudies, and distributional semantics to investigate human language processing (Unpublished PhD thesis). Ghent University, Ghent, Belgium. Available at
  81. Meara, P. M., & Buxton, B. (1987). An alternative to multiple choice vocabulary tests. Language Testing, 4, 142–154.CrossRefGoogle Scholar
  82. Monaghan, P., Chang, Y. N., Welbourne, S., & Brysbaert, M. (2017). Exploring the relations between word frequency, language exposure, and bilingualism in a computational model of reading. Journal of Memory and Language, 93, 1–21.CrossRefGoogle Scholar
  83. Monsell, S., Doyle, M. C., & Haggard, P. N. (1989). Effects of frequency on visual word recognition tasks: Where are they? Journal of Experimental Psychology: General, 118, 43–71.CrossRefGoogle Scholar
  84. Morrison, C. M., & Ellis, A. W. (1995). Roles of word-frequency and age of acquisition in word naming and lexical decision. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 116–133.Google Scholar
  85. Mousikou, P., Sadat, J., Lucas, R., & Rastle, K. (2017). Moving beyond the monosyllable in models of skilled reading: Mega-study of disyllabic nonword reading. Journal of Memory and Language, 93, 169–192.CrossRefGoogle Scholar
  86. Muncer, S. J., Knight, D., & Adams, J. W. (2014). Bigram frequency, number of syllables and morphemes and their effects on lexical decision and word naming. Journal of Psycholinguistic Research, 43, 241–254.CrossRefPubMedGoogle Scholar
  87. New, B., Ferrand, L., Pallier, C., & Brysbaert, M. (2006). Re-examining word length effects in visual word recognition: New evidence from the English Lexicon Project. Psychonomic Bulletin & Review, 13, 45–52.CrossRefGoogle Scholar
  88. Norris, D., & Kinoshita, S. (2012). Reading through a noisy channel: Why there’s nothing special about the perception of orthography. Psychological Review, 119, 517–545.CrossRefPubMedGoogle Scholar
  89. Perea, M., & Pollatsek, A. (1998). The effects of neighborhood frequency in reading and lexical decision. Journal of Experimental Psychology: Human Perception and Performance, 24, 767–779.PubMedGoogle Scholar
  90. Pexman, P. M., Heard, A., Lloyd, E., & Yap, M. J. (2017). The Calgary Semantic Decision Project: concrete/abstract decision data for 10,000 English words. Behavior Research Methods, 49, 407–417. CrossRefPubMedGoogle Scholar
  91. Pollatsek, A., Perea, M., & Binder, K. S. (1999). The effects of “neighborhood size” in reading and lexical decision. Journal of Experimental Psychology: Human Perception and Performance, 25, 1142–1158.PubMedGoogle Scholar
  92. Pritchard, S. C., Coltheart, M., Palethorpe, S., & Castles, A. (2012). Nonword reading: Comparing dual-route cascaded and connectionist dual-process models with human data. Journal of Experimental Psychology: Human Perception and Performance, 38, 1268–1288.PubMedGoogle Scholar
  93. Pynte, J., & Kennedy, A. (2006). An influence over eye movements in reading exerted from beyond the level of the word: Evidence from reading English and French. Vision Research, 46, 3786–3801.CrossRefPubMedGoogle Scholar
  94. Ramscar, M., Hendrix, P., Shaoul, C., Milin, P., & Baayen, H. (2014). The myth of cognitive decline: Non-linear dynamics of lifelong learning. Topics in Cognitive Science, 6, 5–42.CrossRefPubMedGoogle Scholar
  95. Ratcliff, R., Gomez, P., & McKoon, G. (2004). A diffusion model account of the lexical decision task. Psychological Review, 111, 159–182.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Reimers, S., & Stewart, N. (2015). Presentation and response timing accuracy in Adobe Flash and HTML5/JavaScript Web experiments. Behavior Research Methods, 47, 309–327. CrossRefPubMedGoogle Scholar
  97. Rodd, J., Gaskell, G., & Marslen-Wilson, W. (2002). Making sense of semantic ambiguity: Semantic competition in lexical access. Journal of Memory and Language, 46, 245–266.CrossRefGoogle Scholar
  98. Schmalz, X., & Mulatti, C. (2017). Busting a myth with the Bayes factor. The Mental Lexicon, 12, 263–282.CrossRefGoogle Scholar
  99. Schmidtke, D., Kuperman, V., Gagné, C. L., & Spalding, T. L. (2016). Competition between conceptual relations affects compound recognition: the role of entropy. Psychonomic Bulletin & Review, 23, 556–570.CrossRefGoogle Scholar
  100. Schröter, P., & Schroeder, S. (2017). The Developmental Lexicon Project: A behavioral database to investigate visual word recognition across the lifespan. Behavior Research Methods, 49, 2183–2203.CrossRefPubMedGoogle Scholar
  101. Sears, C. R., Hino, Y., & Lupker, S. J. (1995). Neighborhood size and neighborhood frequency effects in word recognition. Journal of Experimental Psychology: Human Perception and Performance, 21, 876–900.Google Scholar
  102. Seidenberg, M. S., & Waters, G. S. (1989). Word recognition and naming: A mega study. Bulletin of the Psychonomic Society, 27, 489.Google Scholar
  103. Sereno, S. C., O’Donnell, P. J., & Sereno, M. E. (2009). Short article: Size matters: Bigger is faster. Quarterly Journal of Experimental Psychology, 62, 1115–1122.CrossRefGoogle Scholar
  104. Soares, A. P., Lages, A., Silva, A., Comesaña, M., Sousa, I., Pinheiro, A. P., & Perea, M. (2019). Psycholinguistic variables in visual word recognition and pronunciation of European Portuguese words: A mega-study approach. Language, Cognition and Neuroscience, 34, 689–719. CrossRefGoogle Scholar
  105. Spieler, D. H., & Balota, D. A. (1997). Bringing computational models of word naming down to the item level. Psychological Science, 8, 411–416.CrossRefGoogle Scholar
  106. Sze, W. P., Liow, S. J. R., & Yap, M. J. (2014). The Chinese Lexicon Project: A repository of lexical decision behavioral responses for 2,500 Chinese characters. Behavior Research Methods, 46, 263–273.CrossRefPubMedGoogle Scholar
  107. Treiman, R., Mullennix, J., Bijeljac-Babic, R., & Richmond-Welty, E. D. (1995). The special role of rimes in the description, use, and acquisition of English orthography. Journal of Experimental Psychology: General, 124, 107–136.CrossRefGoogle Scholar
  108. Tsang, Y. K., Huang, J., Lui, M., Xue, M., Chan, Y. W. F., Wang, S., & Chen, H. C. (2018). MELD-SCH: A megastudy of lexical decision in simplified Chinese. Behavior Research Methods, 50, 1763–1777.CrossRefPubMedGoogle Scholar
  109. Tse, C. S., Yap, M. J., Chan, Y. L., Sze, W. P., Shaoul, C., & Lin, D. (2017). The Chinese Lexicon Project: A megastudy of lexical decision performance for 25,000+ traditional Chinese two-character compound words. Behavior Research Methods, 49, 1503–1519.CrossRefPubMedGoogle Scholar
  110. Tucker, B. V., Brenner, D., Danielson, D. K., Kelley, M. C., Nenadić, F., & Sims, M. (2019). The Massive Auditory Lexical Decision (MALD) database. Behavior Research Methods, 51, 1187–1204. CrossRefPubMedGoogle Scholar
  111. Verhaeghen, P. (2003). Aging and vocabulary score: A meta-analysis. Psychology and Aging, 18, 332–339.CrossRefPubMedGoogle Scholar
  112. Winsler, K., Midgley, K. J., Grainger, J., & Holcomb, P. J. (2018). An electrophysiological megastudy of spoken word recognition. Language, Cognition and Neuroscience, 33, 1063–1082.CrossRefGoogle Scholar
  113. Wulff, D. U., De Deyne, S., Jones, M. N., Mata, R., Austerweil, J. L., Baayen, R. H., . . . Veríssimo, J. (2019). New perspectives on the aging lexicon. Trends in Cognitive Sciences.
  114. Yap, M. J., & Balota, D. A. (2009). Visual word recognition of multisyllabic words. Journal of Memory and Language, 60, 502–529.CrossRefGoogle Scholar
  115. Yap, M. J., Balota, D. A., Sibley, D. E., & Ratcliff, R. (2012). Individual differences in visual word recognition: Insights from the English Lexicon Project. Journal of Experimental Psychology: Human Perception and Performance, 38, 53–79.PubMedPubMedCentralGoogle Scholar
  116. Yap, M. J., Balota, D. A., Tse, C. S., & Besner, D. (2008). On the additive effects of stimulus quality and word frequency in lexical decision: Evidence for opposing interactive influences revealed by RT distributional analyses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 495–513.PubMedGoogle Scholar
  117. Yap, M. J., Liow, S. J. R., Jalil, S. B., & Faizal, S. S. B. (2010). The Malay Lexicon Project: A database of lexical statistics for 9,592 words. Behavior Research Methods, 42, 992–1003.CrossRefPubMedGoogle Scholar
  118. Yarkoni, T., Balota, D. A., & Yap, M. J. (2008). Moving beyond Coltheart’s N: A new measure of orthographic similarity. Psychonomic Bulletin & Review, 15, 971–979.CrossRefGoogle Scholar
  119. Yates, M. (2005). Phonological neighbors speed visual word processing: Evidence from multiple tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 1385–1397.PubMedGoogle Scholar
  120. Yates, M. (2009). Phonological neighborhood spread facilitates lexical decisions. Quarterly Journal of Experimental Psychology, 62, 1304–1314.CrossRefGoogle Scholar
  121. Yates, M., Locker, L., & Simpson, G. B. (2004). The influence of phonological neighborhood on visual word perception. Psychonomic Bulletin & Review, 11, 452–457.CrossRefGoogle Scholar
  122. Ziegler, J. C., & Perry, C. (1998). No more problems in Coltheart’s neighborhood: Resolving neighborhood conflicts in the lexical decision task. Cognition, 68, B53–B62.CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Paweł Mandera
    • 1
  • Emmanuel Keuleers
    • 2
  • Marc Brysbaert
    • 1
    Email author
  1. 1.Department of Experimental PsychologyGhent UniversityGhentBelgium
  2. 2.Department Cognitive Science and Artificial IntelligenceTilburg UniversityTilburgThe Netherlands

Personalised recommendations