Advertisement

Behavior Research Methods

, Volume 51, Issue 5, pp 2094–2105 | Cite as

Visual and auditory perceptual strength norms for 3,596 French nouns and their relationship with other psycholinguistic variables

  • Georges ChedidEmail author
  • Simona Maria Brambati
  • Christophe Bedetti
  • Amandine E. Rey
  • Maximilliano A. Wilson
  • Guillaume T. Vallet
Article

Abstract

Perceptual experience plays a critical role in the conceptual representation of words. Higher levels of semantic variables such as imageability, concreteness, and sensory experience are generally associated with faster and more accurate word processing. Nevertheless, these variables tend to be assessed mostly on the basis of visual experience. This underestimates the potential contributions of other perceptual modalities. Accordingly, recent evidence has stressed the importance of providing modality-specific perceptual strength norms. In the present study, we developed French Canadian norms of visual and auditory perceptual strength (i.e., the modalities that have major impact on word processing) for 3,596 nouns. We then explored the relationship between these newly developed variables and other lexical, orthographic, and semantic variables. Finally, we demonstrated the contributions of visual and auditory perceptual strength ratings to visual word processing beyond those of other semantic variables related to perceptual experience (e.g., concreteness, imageability, and sensory experience ratings). The ratings developed in this study are a meaningful contribution toward the implementation of new studies that will shed further light on the interaction between linguistic, semantic, and perceptual systems.

Keywords

Perceptual strength Norms Regression Psycholinguistic variables 

Notes

Author note

G.C. is supported by a Fonds de recherche du Québec–Nature et Technologies (FRQ-NT) fellowship. S.M.B. is supported by a Fonds de recherche du Québec–Santé (FRQS) Chercheur Boursier Junior 2 Scholarship. The work was supported by the Natural Sciences and Engineering Research Council of Canada (Grant 418630-2012 to S.M.B.) and by the Social Sciences and Humanities Research Council of Canada (Grant 430-2015-00699 to M.A.W.).

Supplementary material

13428_2019_1254_MOESM1_ESM.doc (418 kb)
ESM 1 (DOC 418 kb)
13428_2019_1254_MOESM2_ESM.xlsx (54 kb)
ESM 2 (XLSX 53 kb)

References

  1. Allen, R., & Hulme, C. (2006). Speech and language processing mechanisms in verbal serial recall. Journal of Memory and Language, 55, 64–88.  https://doi.org/10.1016/j.jml.2006.02.002 CrossRefGoogle Scholar
  2. Barros-Loscertales, A., Gonzalez, J., Pulvermuller, F., Ventura-Campos, N., Bustamante, J. C., Costumero, V., . . . Avila, C. (2012). Reading salt activates gustatory brain regions: fMRI evidence for semantic grounding in a novel sensory modality. Cerebral Cortex, 22, 2554–2563.  https://doi.org/10.1093/cercor/bhr324 CrossRefGoogle Scholar
  3. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–609, disc. 610–660.  https://doi.org/10.1017/S0140525X99002149 CrossRefPubMedGoogle Scholar
  4. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.  https://doi.org/10.1146/annurev.psych.59.103006.093639 CrossRefPubMedGoogle Scholar
  5. Beau, S., & Rey, A. (2015). Github repository, https://github.com/sebastienbeau/aphrodite-survey.
  6. Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15, 527–536.  https://doi.org/10.1016/j.tics.2011.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Binder, J. R., Westbury, C. F., McKiernan, K. A., Possing, E. T., & Medler, D. A. (2005). Distinct brain systems for processing concrete and abstract concepts. Journal of Cognitive Neuroscience, 17, 905–917.CrossRefGoogle Scholar
  8. Bonin, P., Méot, A., & Bugaiska, A. (2018). Concreteness norms for 1,659 French words: Relationships with other psycholinguistic variables and word recognition times. Behavior Research Methods, 50, 2366–2387.  https://doi.org/10.3758/s13428-018-1014-y CrossRefPubMedGoogle Scholar
  9. Bonin, P., Méot, A., Ferrand, L., & Bugaiska, A. (2015). Sensory experience ratings (SERs) for 1,659 French words: Relationships with other psycholinguistic variables and visual word recognition. Behavior Research Methods, 47, 813–825.  https://doi.org/10.3758/s13428-014-0503-x CrossRefPubMedGoogle Scholar
  10. Bonin, P., Peereman, R., Malardier, N., Méot, A., & Chalard, M. (2003). A new set of 299 pictures for psycholinguistic studies: French norms for name agreement, image agreement, conceptual familiarity, visual complexity, image variability, age of acquisition, and naming latencies. Behavior Research Methods, Instruments, & Computers, 35, 158–167.  https://doi.org/10.3758/BF03195507 CrossRefGoogle Scholar
  11. Borghi, A. M., & Riggio, L. (2015). Stable and variable affordances are both automatic and flexible. Frontiers in Human Neuroscience, 9, 351.  https://doi.org/10.3389/fnhum.2015.00351 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Boukadi, M., Zouaidi, C., & Wilson, M. A. (2016). Norms for name agreement, familiarity, subjective frequency, and imageability for 348 object names in Tunisian Arabic. Behavior Research Methods, 48, 585–599.  https://doi.org/10.3758/s13428-015-0602-3 CrossRefPubMedGoogle Scholar
  13. Brysbaert, & Ghyselinck, M. (2006). The effect of age of acquisition: Partly frequency related, partly frequency independent. Visual Cognition, 13, 992–1011.  https://doi.org/10.1080/13506280544000165 CrossRefGoogle Scholar
  14. Brysbaert, Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46, 904–911.  https://doi.org/10.3758/s13428-013-0403-5 CrossRefPubMedGoogle Scholar
  15. Chedid, G., Wilson, M. A., Bedetti, C., Rey, A. E., Vallet, G. T., & Brambati, S. M. (2018). Norms of conceptual familiarity for 3,596 French nouns and their contribution in lexical decision. Behavior Research Methods. Online ISSN1554-3528 -  https://doi.org/10.3758/s13428-018-1106-8
  16. Colavita, F. B. (1974). Human sensory dominance. Perception & Psychophysics, 16, 409–412.  https://doi.org/10.3758/BF03203962 CrossRefGoogle Scholar
  17. Connell, L., & Lynott, D. (2010). Look but don’t touch: Tactile disadvantage in processing modality-specific words. Cognition, 115, 1–9.  https://doi.org/10.1016/j.cognition.2009.10.005 CrossRefPubMedGoogle Scholar
  18. Connell, L., & Lynott, D. (2012). Strength of perceptual experience predicts word processing performance better than concreteness or imageability. Cognition, 125, 452–465.  https://doi.org/10.1016/j.cognition.2012.07.010 CrossRefPubMedGoogle Scholar
  19. Connell, L., & Lynott, D. (2014). I see/hear what you mean: semantic activation in visual word recognition depends on perceptual attention. Journal of Experimental Psychology: General, 143, 527–533.  https://doi.org/10.1037/a0034626 CrossRefGoogle Scholar
  20. Cortese, M. J., & Khanna, M. M. (2007). Age of acquisition predicts naming and lexical-decision performance above and beyond 22 other predictor variables: An analysis of 2,342 words. Quarterly Journal of Experimental Psychology, 60, 1072–1082.  https://doi.org/10.1080/17470210701315467 CrossRefGoogle Scholar
  21. Cortese, M. J., & Schock, J. (2013). Imageability and age of acquisition effects in disyllabic word recognition. Quarterly Journal of Experimental Psychology, 66, 946–972.  https://doi.org/10.1080/17470218.2012.722660 CrossRefGoogle Scholar
  22. Crutch, S. J., Connell, S., & Warrington, E. K. (2009). The different representational frameworks underpinning abstract and concrete knowledge: Evidence from odd-one-out judgements. Quarterly Journal of Experimental Psychology, 62, 1377–1388, 1388–1390.  https://doi.org/10.1080/17470210802483834 CrossRefGoogle Scholar
  23. Crutch, S. J., & Warrington, E. K. (2005). Abstract and concrete concepts have structurally different representational frameworks. Brain, 128, 615–627.  https://doi.org/10.1093/brain/awh349 CrossRefPubMedGoogle Scholar
  24. Cuetos, F., & Barbón, A. (2006). Word naming in Spanish. European Journal of Cognitive Psychology, 18, 415–436.  https://doi.org/10.1080/13594320500165896 CrossRefGoogle Scholar
  25. Davies, R., Wilson, M., Cuetos, F., & Burani, C. (2014). Reading in Spanish and Italian: Effects of age of acquisition in transparent orthographies? Quarterly Journal of Experimental Psychology, 67, 1808–1825.  https://doi.org/10.1080/17470218.2013.872155 CrossRefGoogle Scholar
  26. Desrochers, A., & Thompson, G. L. (2009). Subjective frequency and imageability ratings for 3,600 French nouns. Behavior Research Methods, 41, 546–557.  https://doi.org/10.3758/BRM.41.2.546 CrossRefPubMedGoogle Scholar
  27. Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8, 162–169.  https://doi.org/10.1016/j.tics.2004.02.002 CrossRefPubMedGoogle Scholar
  28. Ferrand, L., Bonin, P., Meot, A., Augustinova, M., New, B., Pallier, C., & Brysbaert, M. (2008). Age-of-acquisition and subjective frequency estimates for all generally known monosyllabic French words and their relation with other psycholinguistic variables. Behavior Research Methods, 40, 1049–1054.  https://doi.org/10.3758/BRM.40.4.1049 CrossRefPubMedGoogle Scholar
  29. Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin, P., Meot, A., . . . Pallier, C. (2010). The French Lexicon Project: Lexical decision data for 38,840 French words and 38,840 pseudowords. Behavior Research Methods, 42, 488–496.  https://doi.org/10.3758/BRM.42.2.488 CrossRefGoogle Scholar
  30. Fliessbach, K., Weis, S., Klaver, P., Elger, C. E., & Weber, B. (2006). The effect of word concreteness on recognition memory. NeuroImage, 32, 1413–1421.  https://doi.org/10.1016/j.neuroimage.2006.06.007 CrossRefPubMedGoogle Scholar
  31. Gardner, E. P., & Martin, J. H. (2000). Coding of sensory information. In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), Principles of neural science (4th ed., pp. 411–429). New York, NY: McGraw-Hill.Google Scholar
  32. Ghyselinck, M., Lewis, M. B., & Brysbaert, M. (2004). Age of acquisition and the cumulative-frequency hypothesis: A review of the literature and a new multi-task investigation. Acta Psychologica, 115, 43–67.  https://doi.org/10.1016/j.actpsy.2003.11.002 CrossRefPubMedGoogle Scholar
  33. Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., . . . Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536, 171–178.  https://doi.org/10.1038/nature18933 CrossRefGoogle Scholar
  34. Glenberg, A. M., Witt, J. K., & Metcalfe, J. (2013). From the revolution to embodiment: 25 years of cognitive psychology. Perspectives on Psychological Science, 8, 573–585.  https://doi.org/10.1177/1745691613498098 CrossRefPubMedGoogle Scholar
  35. Goldberg, R. F., Perfetti, C. A., & Schneider, W. (2006). Perceptual knowledge retrieval activates sensory brain regions. Journal of Neuroscience, 26, 4917–4921.  https://doi.org/10.1523/JNEUROSCI.5389-05.2006 CrossRefPubMedGoogle Scholar
  36. Gonzalez, J., Barros-Loscertales, A., Pulvermuller, F., Meseguer, V., Sanjuan, A., Belloch, V., & Avila, C. (2006). Reading cinnamon activates olfactory brain regions. NeuroImage, 32, 906–912.  https://doi.org/10.1016/j.neuroimage.2006.03.037 CrossRefPubMedGoogle Scholar
  37. Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377–396, disc. 396–442.CrossRefGoogle Scholar
  38. Hecht, D., & Reiner, M. (2009). Sensory dominance in combinations of audio, visual and haptic stimuli. Experimental Brain Research, 193, 307–314.  https://doi.org/10.1007/s00221-008-1626-z CrossRefPubMedGoogle Scholar
  39. Holcomb, P. J., Kounios, J., Anderson, J. E., & West, W. C. (1999). Dual-coding, context-availability, and concreteness effects in sentence comprehension: An electrophysiological investigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 721–742.  https://doi.org/10.1037/0278-7393.25.3.721 CrossRefPubMedGoogle Scholar
  40. Howell, D. C. (1992). Statistical methods for psychology (3rd ed.). Boston, MA: PWS-Kent.Google Scholar
  41. Jessen, F., Heun, R., Erb, M., Granath, D. O., Klose, U., Papassotiropoulos, A., & Grodd, W. (2000). The concreteness effect: Evidence for dual coding and context availability. Brain and Language, 74, 103–112.  https://doi.org/10.1006/brln.2000.2340 CrossRefPubMedGoogle Scholar
  42. Juhasz, B. J., Lai, Y. H., & Woodcock, M. L. (2015). A database of 629 English compound words: Ratings of familiarity, lexeme meaning dominance, semantic transparency, age of acquisition, imageability, and sensory experience. Behavior Research Methods, 47, 1004–1019.  https://doi.org/10.3758/s13428-014-0523-6 CrossRefPubMedGoogle Scholar
  43. Juhasz, B. J., & Yap, M. J. (2013). Sensory experience ratings for over 5,000 mono- and disyllabic words. Behavior Research Methods, 45, 160–168.  https://doi.org/10.3758/s13428-012-0242-9 CrossRefPubMedGoogle Scholar
  44. Juhasz, B. J., Yap, M. J., Dicke, J., Taylor, S. C., & Gullick, M. M. (2011). Tangible words are recognized faster: The grounding of meaning in sensory and perceptual systems. Quarterly Journal of Experimental Psychology, 64, 1683–1691.  https://doi.org/10.1080/17470218.2011.605150 CrossRefGoogle Scholar
  45. Kaschak, M. P., Zwaan, R. A., Aveyard, M., & Yaxley, R. H. (2006). Perception of auditory motion affects language processing. Cognitive Science, 30, 733–744.  https://doi.org/10.1207/s15516709cog0000_54 CrossRefPubMedGoogle Scholar
  46. Keetels, M., & Vroomen, J. (2012). Perception of synchrony between the senses. In M. M. Murray & M. T. Wallace (Eds.), The neural bases of multisensory processes (pp. 147–178). Boca Raton, FL: CRC Press.Google Scholar
  47. Kiefer, M., Sim, E. J., Herrnberger, B., Grothe, J., & Hoenig, K. (2008). The sound of concepts: Four markers for a link between auditory and conceptual brain systems. Journal of Neuroscience, 28, 12224–12230.  https://doi.org/10.1523/JNEUROSCI.3579-08.2008 CrossRefPubMedGoogle Scholar
  48. Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior Research Methods, 44, 978–990.  https://doi.org/10.3758/s13428-012-0210-4 CrossRefPubMedGoogle Scholar
  49. Lynott, D., & Connell, L. (2009). Modality exclusivity norms for 423 object properties. Behavior Research Methods, 41, 558–564.  https://doi.org/10.3758/BRM.41.2.558 CrossRefPubMedGoogle Scholar
  50. Lynott, D., & Connell, L. (2013). Modality exclusivity norms for 400 nouns: The relationship between perceptual experience and surface word form. Behavior Research Methods, 45, 516–526.  https://doi.org/10.3758/s13428-012-0267-0 CrossRefPubMedGoogle Scholar
  51. Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58, 25–45.  https://doi.org/10.1146/annurev.psych.57.102904.190143 CrossRefPubMedGoogle Scholar
  52. Meteyard, L., Cuadrado, S. R., Bahrami, B., & Vigliocco, G. (2012). Coming of age: A review of embodiment and the neuroscience of semantics. Cortex, 48, 788–804.  https://doi.org/10.1016/j.cortex.2010.11.002 CrossRefPubMedGoogle Scholar
  53. New, B., Pallier, C., Brysbaert, M., & Ferrand, L. (2004). Lexique 2: A new French lexical database. Behavior Research Methods, Instruments, & Computers, 36, 516–524.  https://doi.org/10.3758/BF03195598 CrossRefGoogle Scholar
  54. Paivio, A., (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology/Revue canadienne de psychologie, 45, (3):255–287CrossRefGoogle Scholar
  55. Paivio, A. (2013). Dual coding theory, word abstractness, and emotion: A critical review of Kousta et al. (2011). Journal of Experimental Psychology: General, 142, 282–287.  https://doi.org/10.1037/a0027004 CrossRefGoogle Scholar
  56. Paivio, A., Yuille, J. C., & Madigan, S. A. (1968). Concreteness, imagery, and meaningfulness values for 925 nouns. Journal of Experimental Psychology, 76(1, Pt. 2), 1–25.  https://doi.org/10.1037/h0025327 CrossRefGoogle Scholar
  57. Paivio, A., Yuille, J. C., & Smythe, P. C. (1966). Stimulus and response abstractness, imagery, and meaningfulness, and reported mediators in paired-associate learning. Canadian Journal of Psychology, 20, 362–377.CrossRefGoogle Scholar
  58. Parker, P. L., McDaniel, H. S., & Crumpton-Young, L. L. (2002). Do research participants give interval or ordinal answers in response to Likert scales? In Proceedings of the IISE Annual Conference (p. 1). Peachtree Corners, GA: Institute of Industrial and Systems Engineers.Google Scholar
  59. Pfennings, L., Cohen, L., & van der Ploeg, H. (1995). Preconditions for sensitivity in measuring change: visual analogue scales compared to rating scales in a Likert format. Psychological Reports, 77, 475–480.  https://doi.org/10.2466/pr0.1995.77.2.475 CrossRefPubMedGoogle Scholar
  60. Rey, A. E., Riou, B., Vallet, G. T., & Versace, R. (2017). The automatic visual simulation of words: A memory reactivated mask slows down conceptual access. Canadian Journal of Experimental Psychology, 71, 14–22.  https://doi.org/10.1037/cep0000100 CrossRefPubMedGoogle Scholar
  61. Romani, C., McAlpine, S., & Martin, R. C. (2008). Concreteness effects in different tasks: Implications for models of short-term memory. Quarterly Journal of Experimental Psychology, 61, 292–323.  https://doi.org/10.1080/17470210601147747 CrossRefGoogle Scholar
  62. Sabsevitz, D. S., Medler, D. A., Seidenberg, M., & Binder, J. R. (2005). Modulation of the semantic system by word imageability. NeuroImage, 27, 188–200.  https://doi.org/10.1016/j.neuroimage.2005.04.012 CrossRefPubMedGoogle Scholar
  63. Sanchez-Gutierrez, C. H., Mailhot, H., Deacon, S. H., & Wilson, M. A. (2018). MorphoLex: A derivational morphological database for 70,000 English words. Behavior Research Methods, 50, 1568–1580.  https://doi.org/10.3758/s13428-017-0981-8 CrossRefPubMedGoogle Scholar
  64. Sanfeliu, M. C., & Fernandez, A. (1996). A set of 254 Snodgrass-Vanderwart pictures standardized for Spanish: Norms for name agreement, image agreement, familiarity, and visual complexity. Behavior Research Methods, Instruments, & Computers, 28, 537–555.  https://doi.org/10.3758/BF03200541 CrossRefGoogle Scholar
  65. Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K., Martin, A., & Barsalou, L. W. (2007). A common neural substrate for perceiving and knowing about color. Neuropsychologia, 45, 2802–2810.  https://doi.org/10.1016/j.neuropsychologia.2007.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sirois, M., Kremin, H., & Cohen, H. (2006). Picture-naming norms for Canadian French: Name agreement, familiarity, visual complexity, and age of acquisition. Behavior Research Methods, 38, 300–306.  https://doi.org/10.3758/BF03192781 CrossRefPubMedGoogle Scholar
  67. Speed, L. J., & Majid, A. (2017). Dutch modality exclusivity norms: Simulating perceptual modality in space. Behavior Research Methods, 49, 2204–2218.  https://doi.org/10.3758/s13428-017-0852-3 CrossRefPubMedGoogle Scholar
  68. Tsaparina, D., Bonin, P., & Méot, A. (2011). Russian norms for name agreement, image agreement for the colorized version of the Snodgrass and Vanderwart pictures and age of acquisition, conceptual familiarity, and imageability scores for modal object names. Behavior Research Methods, 43, 1085–1099.  https://doi.org/10.3758/s13428-011-0121-9 CrossRefPubMedGoogle Scholar
  69. Vallet, G., Brunel, L., & Versace, R. (2010). The perceptual nature of the cross-modal priming effect: Arguments in favor of a sensory-based conception of memory. Experimental Psychology, 57, 376–382.  https://doi.org/10.1027/1618-3169/a000045 CrossRefPubMedGoogle Scholar
  70. Vallet, G., Simard, M., Versace, R., & Mazza, S. (2013). The perceptual nature of audiovisual interactions for semantic knowledge in young and elderly adults. Acta Psychologica, 143, 253–260.  https://doi.org/10.1016/j.actpsy.2013.04.009 CrossRefPubMedGoogle Scholar
  71. van Dantzig, S., Cowell, R. A., Zeelenberg, R., & Pecher, D. (2011). A sharp image or a sharp knife: Norms for the modality-exclusivity of 774 concept-property items. Behavior Research Methods, 43, 145–154.  https://doi.org/10.3758/s13428-010-0038-8 CrossRefPubMedGoogle Scholar
  72. Van Dantzig, S., Pecher, D., Zeelenberg, R., & Barsalou, L. W. (2008). Perceptual processing affects conceptual processing. Cognitive Science, 32, 579–590.  https://doi.org/10.1080/03640210802035365 CrossRefPubMedGoogle Scholar
  73. Versace, R., Vallet, G. T., Riou, B., Lesourd, M., Labeye, É., & Brunel, L. (2014). Act-In: An integrated view of memory mechanisms. Journal of Cognitive Psychology, 26, 280–306.  https://doi.org/10.1080/20445911.2014.892113 CrossRefGoogle Scholar
  74. Voutilainen, A., Pitkaaho, T., Kvist, T., & Vehvilainen-Julkunen, K. (2016). How to ask about patient satisfaction? The visual analogue scale is less vulnerable to confounding factors and ceiling effect than a symmetric Likert scale. Journal of Advanced Nursing, 72, 946–957.  https://doi.org/10.1111/jan.12875 CrossRefPubMedGoogle Scholar
  75. Wilson, M. A., Cuetos, F., Davies, R., & Burani, C. (2013). Revisiting age-of-acquisition effects in Spanish visual word recognition: The role of item imageability. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 1842–1859.  https://doi.org/10.1037/a0033090 CrossRefPubMedGoogle Scholar
  76. Winter, B. (2016). Taste and smell words form an affectively loaded and emotionally flexible part of the English lexicon. Language, Cognition and Neuroscience, 31, 975–988.  https://doi.org/10.1080/23273798.2016.1193619 CrossRefGoogle Scholar
  77. Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond Coltheart’s N: A new measure of orthographic similarity. Psychonomic Bulletin & Review, 15, 971–979.  https://doi.org/10.3758/PBR.15.5.971 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Georges Chedid
    • 1
    • 2
    Email author
  • Simona Maria Brambati
    • 1
    • 2
  • Christophe Bedetti
    • 2
  • Amandine E. Rey
    • 4
  • Maximilliano A. Wilson
    • 3
  • Guillaume T. Vallet
    • 1
    • 2
    • 5
  1. 1.Department of PsychologyUniversity of MontrealMontrealCanada
  2. 2.Centre de RechercheInstitut Universitaire de Gériatrie de MontréalMontrealCanada
  3. 3.Centre de recherche CERVO et Département de réadaptationUniversité LavalQuebec CityCanada
  4. 4.Laboratoire d’Étude des Mécanismes CognitifsUniversité Lyon 2LyonFrance
  5. 5.CNRS UMR 6024, Laboratoire de Psychologie Sociale et CognitiveUniversité Clermont AuvergneClermont-FerrandFrance

Personalised recommendations