Advertisement

Implementing a concept network model

  • Sarah H. SolomonEmail author
  • John D. Medaglia
  • Sharon L. Thompson-Schill
Article

Abstract

The same concept can mean different things or be instantiated in different forms, depending on context, suggesting a degree of flexibility within the conceptual system. We propose that a feature-based network model can be used to capture and predict this flexibility. We modeled individual concepts (e.g., banana, bottle) as graph-theoretical networks, in which properties (e.g., yellow, sweet) were represented as nodes and their associations as edges. In this framework, networks capture within-concept statistics that reflect how properties relate to one another across instances of a concept. We extracted formal measures of these networks that capture different aspects of network structure, and explored whether a concept’s network structure relates to its flexibility of use. To do so, we compared network measures to a text-based measure of semantic diversity, as well as to empirical data from a figurative-language task and an alternative-uses task. We found that network-based measures were predictive of the text-based and empirical measures of flexible concept use, highlighting the ability of this approach to formally capture relevant characteristics of conceptual structure. Conceptual flexibility is a fundamental attribute of the cognitive and semantic systems, and in this proof of concept we reveal that variations in concept representation and use can be formally understood in terms of the informational content and topology of concept networks.

Keywords

Conceptual knowledge Conceptual flexibility Network science 

Notes

Supplementary material

13428_2019_1217_MOESM1_ESM.docx (206 kb)
ESM 1 (DOCX 206 kb)

References

  1. Abbott, J. T., Austerweil, J. L., & Griffiths, T. L. (2015). Random walks on semantic networks can resemble optimal foraging. Psychological Review, 122, 558–569.CrossRefGoogle Scholar
  2. Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012). The role of social networks in information diffusion. In Proceedings of the 21st International Conference on World Wide Web (pp. 519–528). New York, NY: ACM Press.Google Scholar
  3. Barabási, A. L. (2016). Network science. Cambridge, UK: Cambridge University Press.Google Scholar
  4. Barsalou, L. W. (1982). Context-independent and context-dependent information in concepts. Memory & Cognition, 10, 82–93.  https://doi.org/10.3758/BF03197629 CrossRefGoogle Scholar
  5. Bassett, D. S., & Bullmore, E. D. (2006). Small-world brain networks. The Neuroscientist, 12(6), 512–523.CrossRefGoogle Scholar
  6. Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences, 108, 7641–7646.CrossRefGoogle Scholar
  7. Bassett, D. S., Wymbs, N. F., Rombach, M. P., Porter, M. A., Mucha, P. J., & Grafton, S. T. (2013). Task-based core–periphery organization of human brain dynamics. PLoS Computational Biology, 9, e1003171.  https://doi.org/10.1371/journal.pcbi.1003171 CrossRefGoogle Scholar
  8. Blasko, D. G., & Connine, C. M. (1993). Effects of familiarity and aptness on metaphor processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 295–308.  https://doi.org/10.1037/0278-7393.19.2.295 Google Scholar
  9. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424, 175–308. doi: https://doi.org/10.1016/j.physrep.2005.10.009 CrossRefGoogle Scholar
  10. Borgatti, S. P., & Everett, M. G. (2000). Models of core/periphery structures. Social Networks, 21, 375–395.CrossRefGoogle Scholar
  11. Casasanto, D., & Lupyan, G. (2015). All concepts are ad hoc concepts. In E. Margolis & S. Laurence (Eds.), The conceptual mind: New directions in the study of concepts (pp. 543–566). Cambridge, MA: MIT Press.Google Scholar
  12. Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82, 407–428.  https://doi.org/10.1037/0033-295X.82.6.407 CrossRefGoogle Scholar
  13. Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior, 8, 240–247.CrossRefGoogle Scholar
  14. Coutanche, M. N., Solomon, S. H., & Thompson-Schill, S. L. (2019). Conceptual combination. In D. Poeppel, G. R. Mangun, & M. S. Gazzaniga (Eds.), The cognitive neurosciences (6th ed.). Cambridge, MA: MIT Press.Google Scholar
  15. Cree, G. S., McNorgan, C., & McRae, K. (2006). Distinctive features hold a privileged status in the computation of word meaning: Implications for theories of semantic memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 643–658.  https://doi.org/10.1037/0278-7393.32.4.643 Google Scholar
  16. Cree, G. S., McRae, K., & McNorgan, C. (1999). An attractor model of lexical conceptual processing: Simulating semantic priming. Cognitive Science, 23, 371–414.  https://doi.org/10.1207/s15516709cog2303_4 CrossRefGoogle Scholar
  17. De Deyne, S., Navarro, D. J., Perfors, A., & Storms, G. (2016). Structure at every scale: A semantic network account of the similarities between unrelated concepts. Journal of Experimental Psychology: General, 145, 1228–1254.  https://doi.org/10.1037/xge0000192 CrossRefGoogle Scholar
  18. Devlin, J. T., Gonnerman, L. M., Andersen, E. S., & Seidenberg, M. S. (1998). Category-specific semantic deficits in focal and widespread brain damage: A computational account. Journal of Cognitive Neuroscience, 10, 77–94.CrossRefGoogle Scholar
  19. Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation. Psychological Review, 114, 211–244.  https://doi.org/10.1037/0033-295X.114.2.211 CrossRefGoogle Scholar
  20. Gu, S., Pasqualetti, F., Cieslak, M., Telesford, Q. K., Alfred, B. Y., Kahn, A. E., . . . Bassett, D. S. (2015). Controllability of structural brain networks. Nature Communications, 6, 8414.Google Scholar
  21. Halff, H. M., Ortony, A., & Anderson, R. C. (1976). A context-sensitive representation of word meanings. Memory & Cognition, 4, 378–383.CrossRefGoogle Scholar
  22. Hoffman, P., Lambon Ralph, M. A., & Rogers, T. T. (2013). Semantic diversity: A measure of semantic ambiguity on the basis of variability in the contextual usage of words. Behavior Research Methods, 45, 718–730.  https://doi.org/10.3758/s13428-012-0278-x CrossRefGoogle Scholar
  23. Hoffman, P., McClelland, J. L., & Lambon Ralph, M. A. (2018). Concepts, control, and context: A connectionist account of normal and disordered semantic cognition. Psychological Review, 125, 293–328.  https://doi.org/10.1037/rev0000094
  24. Huang, W., Bolton, T. A. W., Medaglia, J. D., Bassett, D. S., Ribeiro, A., & Van De Ville, D. (2018). A graph signal processing perspective on functional brain imaging. Proceedings of the IEEE, 106, 868–885.  https://doi.org/10.1109/JPROC.2018.2798928 CrossRefGoogle Scholar
  25. i Cancho, R. F., & Solé, R. V. (2001). The small world of human language. Proceedings of the Royal Society B, 268, 2261–2265.CrossRefGoogle Scholar
  26. Keil, F. C. (1992). Concepts, kinds, and cognitive development. Cambridge, MA: MIT Press.Google Scholar
  27. Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8, 407.  https://doi.org/10.3389/fnhum.2014.00407 CrossRefGoogle Scholar
  28. Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18, 42–55.  https://doi.org/10.1038/nrn.2016.150 CrossRefGoogle Scholar
  29. Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211–240.  https://doi.org/10.1037/0033-295X.104.2.211 CrossRefGoogle Scholar
  30. Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., & Bullmore, E. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30, 9477–9487.CrossRefGoogle Scholar
  31. McClelland, J. L., & Rogers T. T. (2003). The parallel distributed processing approach to semantic cognition. Nature Reviews Neuroscience, 4, 310–322.  https://doi.org/10.1038/nrn1076 CrossRefGoogle Scholar
  32. McElree, B., Traxler, M. J., Pickering, M. J., Seely, R. E., & Jackendoff, R. (2001). Reading time evidence for enriched composition. Cognition, 78, B17–B25.CrossRefGoogle Scholar
  33. McRae, K. (2004). Semantic memory: Some insights from feature-based connectionist attractor networks. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 45, pp. 41–86). San Diego, CA: Elsevier Academic Press.Google Scholar
  34. McRae, K., Cree, G. S., Westmacott, R., & de Sa, V. R. (1999). Further evidence for feature correlations in semantic memory. Canadian Journal of Experimental Psychology, 53, 360–373.  https://doi.org/10.1037/h0087323 CrossRefGoogle Scholar
  35. McRae, K., de Sa, V. R., & Seidenberg, M. S. (1997). On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology: General, 126, 99–130.  https://doi.org/10.1037/0096-3445.126.2.99 CrossRefGoogle Scholar
  36. Medaglia, J. D. (2018). Clarifying cognitive control and the controllable connectome. arXiv preprint. arXiv:1801.08806Google Scholar
  37. Medaglia, J. D., Huang, W., Karuza, E. A., Kelkar, A., Thompson-Schill, S. L., Ribeiro, A., & Bassett, D. S. (2018). Functional alignment with anatomical networks is associated with cognitive flexibility. Nature Human Behaviour, 2, 156–164.  https://doi.org/10.1038/s41562-017-0260-9 CrossRefGoogle Scholar
  38. Miller, G. A., & Fellbaum, C. (2007). WordNet then and now. Language Resources and Evaluation, 41, 209–214.CrossRefGoogle Scholar
  39. Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review, 92, 289–316.  https://doi.org/10.1037/0033-295X.92.3.289 CrossRefGoogle Scholar
  40. Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N., & Petersen, S. E. (2013). Evidence for hubs in human functional brain networks. Neuron, 79, 798–813.CrossRefGoogle Scholar
  41. Pustejovsky, J. (1998). Generativity and explanation in semantics: A reply to Fodor and Lepore. Linguistic Inquiry, 29, 289–311.CrossRefGoogle Scholar
  42. Rodd, J. M., Gaskell, M. G., & Marslen-Wilson, W. D. (2004). Modelling the effects of semantic ambiguity in word recognition. Cognitive Science, 28, 89–104.  https://doi.org/10.1207/s15516709cog2801_4 CrossRefGoogle Scholar
  43. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52, 1059–1069.CrossRefGoogle Scholar
  44. Rubinov, M., & Sporns, O. (2011). Weight-conserving characterization of complex functional brain networks. NeuroImage, 56, 2068–2079.CrossRefGoogle Scholar
  45. Rubinov, M., Ypma, R. J., Watson, C., & Bullmore, E. T. (2015). Wiring cost and topological participation of the mouse brain connectome. Proceedings of the National Academy of Sciences, 112, 10032–10037.CrossRefGoogle Scholar
  46. Salvador, R., Suckling, J., Schwarzbauer, C., & Bullmore, E. (2005). Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philosophical Transactions of the Royal Society B, 360, 937–946.  https://doi.org/10.1098/rstb.2005.1645 CrossRefGoogle Scholar
  47. Sedivy, J. C. (2003). Pragmatic versus form-based accounts of referential contrast: Evidence for effects of informativity expectations. Journal of Psycholinguistic Research, 32, 3–23.CrossRefGoogle Scholar
  48. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., . . . Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.Google Scholar
  49. Sloman, S. A., Love, B. C., & Ahn, W. K. (1998). Feature centrality and conceptual coherence. Cognitive Science, 22, 189–228.CrossRefGoogle Scholar
  50. Smith, E. E., Shoben, E. J., & Rips, L. J. (1974). Structure and process in semantic memory: A featural model for semantic decisions. Psychological Review, 81, 214–241.  https://doi.org/10.1037/h0036351 CrossRefGoogle Scholar
  51. Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17, 652–660.  https://doi.org/10.1038/nn.3690 CrossRefGoogle Scholar
  52. Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. Cognitive Science, 29, 41–78.  https://doi.org/10.1207/s15516709cog2901_3 CrossRefGoogle Scholar
  53. Traxler, M. J., McElree, B., Williams, R. S., & Pickering, M. J. (2005). Context effects in coercion: Evidence from eye movements. Journal of Memory and Language, 53, 1–25.CrossRefGoogle Scholar
  54. Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.  https://doi.org/10.1037/0033-295X.84.4.327 CrossRefGoogle Scholar
  55. Tyler, L. K., & Moss, H. E. (2001). Toward a distributed account of conceptual knowledge. Trends in Cognitive Sciences, 5, 244–252.  https://doi.org/10.1016/S1364-6613(00)01651-X CrossRefGoogle Scholar
  56. van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17, 683–696.CrossRefGoogle Scholar
  57. van den Heuvel, M. P., Sporns, O., Collin, G., Scheewe, T., Mandl, R. C., Cahn, W., . . . Kahn, R. S. (2013). Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry, 70, 783–792.CrossRefGoogle Scholar
  58. Van Rensbergen, B., Storms, G., & De Deyne, S. (2015). Examining assortativity in the mental lexicon: Evidence from word associations. Psychonomic Bulletin & Review, 22, 1717–1724.  https://doi.org/10.3758/s13423-015-0832-5 CrossRefGoogle Scholar
  59. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440–442.CrossRefGoogle Scholar
  60. Yee, E., & Thompson-Schill, S. L. (2016). Putting concepts into context. Psychonomic Bulletin & Review, 23, 1015–1027.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Sarah H. Solomon
    • 1
    Email author
  • John D. Medaglia
    • 2
  • Sharon L. Thompson-Schill
    • 1
  1. 1.Department of PsychologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of PsychologyDrexel UniversityPhiladelphiaUSA

Personalised recommendations