Advertisement

Behavior Research Methods

, Volume 51, Issue 4, pp 1676–1692 | Cite as

The SNARC and MARC effects measured online: Large-scale assessment methods in flexible cognitive effects

  • Krzysztof CiporaEmail author
  • Mojtaba Soltanlou
  • Ulf-Dietrich Reips
  • Hans-Christoph Nuerk
Article

Abstract

The Spatial–Numerical Association of Response Codes (SNARC) effect (i.e., faster reactions to small/large numbers on the left-/right-hand side) is usually observed along with the linguistic Markedness of Response Codes (MARC) effect—that is, faster left-/right-hand responses to odd/even numbers. The SNARC effect is one of the most thoroughly investigated phenomena in numerical cognition. However, almost all SNARC and MARC studies to date were conducted with sample sizes smaller than 100. Here we report on a study with 1,156 participants from various linguistic and cultural backgrounds performing a typical parity judgment task. We investigated whether (1) the SNARC and MARC effects can be observed in an online setup, (2) the properties of these effects observed online are similar to those observed in laboratory setups, (3) the effects are reliable, and (4) they are valid. We found robust SNARC and MARC effects. Their magnitude and reliabilities were comparable to values previously reported in in-lab studies. Furthermore, we reproduced commonly observed validity correlations of the SNARC and MARC effects. Namely, SNARC and MARC correlated with mean reaction times and intraindividual variability in reaction times. Additionally, we found interindividual differences in the SNARC and MARC effects (e.g., finger-counting routines for the SNARC and handedness for the MARC). Large-scale testing via web-based data acquisition not only produces SNARC and MARC effects and validity correlations similar to those from small, in-lab studies, but also reveals substantial insights with regard to interindividual differences that usually cannot be revealed in the offline laboratory, due to power considerations.

Keywords

SNARC effect MARC effect Online setting Individual differences Web experiment 

Notes

Supplementary material

13428_2019_1213_MOESM1_ESM.docx (29 kb)
ESM 1 (DOCX 29 kb)

References

  1. Aust, F., Diedenhofen, B., Ullrich, S., & Musch, J. (2013). Seriousness checks are useful to improve data validity in online research. Behavior Research Methods, 45, 527–535.  https://doi.org/10.3758/s13428-012-0265-2 CrossRefGoogle Scholar
  2. Bayram, A. B. (2018). Serious subjects: A test of the seriousness technique to increase participant motivation in political science experiments. Research & Politics, 5(2), 2053168018767453.  https://doi.org/10.1177/2053168018767453 CrossRefGoogle Scholar
  3. Berch, D. B., Foley, E. J., Hill, R. J., & Ryan, P. M. D. (1999). Extracting parity and magnitude from arabic numerals: Developmental changes in number processing and mental representation. Journal of Experimental Child Psychology, 74, 286–308.  https://doi.org/10.1006/jecp.1999.2518 CrossRefGoogle Scholar
  4. Bull, R., Cleland, A. A., & Mitchell, T. (2013). Sex differences in the spatial representation of number. Journal of Experimental Psychology: General, 142, 181–192.  https://doi.org/10.1037/a0028387 CrossRefGoogle Scholar
  5. Cipora, K., Hohol, M., Nuerk, H.-C., Willmes, K., Brożek, B., Kucharzyk, B., & Nęcka, E. (2016). Professional mathematicians differ from controls in their spatial–numerical associations. Psychological Research, 80, 710–726.  https://doi.org/10.1007/s00426-015-0677-6 CrossRefGoogle Scholar
  6. Cipora, K., & Nuerk, H.-C. (2013). Is the SNARC effect related to the level of mathematics? No systematic relationship observed despite more power, more repetitions, and more direct assessment of arithmetic skill. Quarterly Journal of Experimental Psychology, 66, 1974–1991.  https://doi.org/10.1080/17470218.2013.772215 CrossRefGoogle Scholar
  7. Cipora, K., Patro, K., & Nuerk, H.-C. (2015). Are spatial–numerical associations a cornerstone for arithmetic learning? The lack of genuine correlations suggests no. Mind, Brain, and Education, 9, 190–206.  https://doi.org/10.1111/mbe.12093 CrossRefGoogle Scholar
  8. Cipora, K., Patro, K., & Nuerk, H.-C. (2018). Situated influences on spatial–numerical associations. In T. Hubbard (Ed.), Spatial biases in perception and cognition (pp. 41–49). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. Cipora, K., Schroeder, P. A., & Nuerk, H.-C. (2019a). On the multitude of mathematics skills: Spatial–numerical associations and geometry skill? In K. S. Mix & M. Battista (Eds.), Visualizing mathematics: The role of spatial reasoning in mathematical thought (pp. 361–370). Cham: Springer.Google Scholar
  10. Cipora, K., Schroeder, P. A., Soltanlou, M., & Nuerk, H.-C. (2019b). More space, better mathematics: Is space a powerful tool or a cornerstone for understanding arithmetic? In K. S. Mix & M. T. Battista (Eds.), Visualizing mathematics: The role of spatial reasoning in mathematical thought (pp. 77–116). Cham: Springer.Google Scholar
  11. Cipora, K., & Wood, G. (2017). Finding the SNARC instead of hunting it: A 20*20 Monte Carlo investigation. Frontiers in Psychology, 8, 1194.  https://doi.org/10.3389/fpsyg.2017.01194 CrossRefGoogle Scholar
  12. Cooper, S. R., Gonthier, C., Barch, D. M., & Braver, T. S. (2017). The role of psychometrics in individual differences research in cognition: A case study of the AX-CPT. Frontiers in Psychology, 8, 1482.  https://doi.org/10.3389/fpsyg.2017.01482 CrossRefGoogle Scholar
  13. Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating Amazon’s Mechanical Turk as a tool for experimental behavioral research. PLoS ONE, 8, e57410.  https://doi.org/10.1371/journal.pone.0057410 CrossRefGoogle Scholar
  14. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396.  https://doi.org/10.1037/0096-3445.122.3.371 CrossRefGoogle Scholar
  15. Fattorini, E., Pinto, M., Rotondaro, F., & Doricchi, F. (2015). Perceiving numbers does not cause automatic shifts of spatial attention. Cortex, 73, 298–316.  https://doi.org/10.1016/j.cortex.2015.09.007 CrossRefGoogle Scholar
  16. Fias, W., Brysbaert, M., Geypens, F., & D’Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2, 95–110.  https://doi.org/10.1080/135467996387552 CrossRefGoogle Scholar
  17. Fias, W., Lauwereyns, J., & Lammertyn, J. (2001). Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cognitive Brain Research, 12, 415–423.  https://doi.org/10.1016/S0926-6410(01)00078-7 CrossRefGoogle Scholar
  18. Fischer, M. H. (2003a). Cognitive representation of negative numbers. Psychological Science, 14, 278–282.  https://doi.org/10.1111/1467-9280.03435 CrossRefGoogle Scholar
  19. Fischer, M. H. (2003b). Spatial representations in number processing—Evidence from a pointing task. Visual Cognition, 10, 493–508.  https://doi.org/10.1080/13506280244000186 CrossRefGoogle Scholar
  20. Fischer, M. H. (2008). Finger counting habits modulate spatial–numerical associations. Cortex, 44, 386–392.  https://doi.org/10.1016/j.cortex.2007.08.004 CrossRefGoogle Scholar
  21. Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition—From single digits to arithmetic. Quarterly Journal of Experimental Psychology, 67, 1461–1483.  https://doi.org/10.1080/17470218.2014.927515 CrossRefGoogle Scholar
  22. Fischer, M. H., Warlop, N., Hill, R. L., & Fias, W. (2004). Oculomotor bias induced by number perception. Experimental Psychology, 51, 91–97.  https://doi.org/10.1027/1618-3169.51.2.91 CrossRefGoogle Scholar
  23. Garaizar, P., & Reips, U.-D. (2018). Best practices: Two Web-browser-based methods for stimulus presentation in behavioral experiments with high-resolution timing requirements. Behavior Research Methods, 1–13. Advance online publication.  https://doi.org/10.3758/s13428-018-1126-4
  24. Georges, C., Hoffmann, D., & Schiltz, C. (2016). How math anxiety relates to number-space associations. Frontiers in Psychology, 7, 1401:1–15.  https://doi.org/10.3389/fpsyg.2016.01401 Google Scholar
  25. Georges, C., Hoffmann, D., & Schiltz, C. (2017). How and why do number-space associations co-vary in implicit and explicit magnitude processing tasks? Journal of Numerical Cognition, 3, 182–211.CrossRefGoogle Scholar
  26. Georges, C., Hoffmann, D., & Schiltz, C. (2018). Implicit and explicit number-space associations differentially relate to interference control in young adults with ADHD. Frontiers in Psychology, 9, 775.  https://doi.org/10.3389/fpsyg.2018.00775 CrossRefGoogle Scholar
  27. Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). Numbers and space: A computational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and Performance, 32, 32–44.  https://doi.org/10.1037/0096-1523.32.1.32 Google Scholar
  28. Göbel, S. M., McCrink, K., Fischer, M. H., & Shaki, S. (2018). Observation of directional storybook reading influences young children’s counting direction. Journal of Experimental Child Psychology, 166, 49–66.  https://doi.org/10.1016/j.jecp.2017.08.001 CrossRefGoogle Scholar
  29. Gökaydin, D., Brugger, P., & Loetscher, T. (2018). Sequential effects in SNARC. Scientific Reports, 8, 10996:1–13.  https://doi.org/10.1038/s41598-018-29337-2 Google Scholar
  30. Haaf, J. M., Klaassen, F., & Rouder, J. N. (2018). A note on using systems of orders to capture theoretical constraint in psychological science. 10.31234/osf.io/a4xu9Google Scholar
  31. Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50, 1166–1186.  https://doi.org/10.3758/s13428-017-0935-1 CrossRefGoogle Scholar
  32. Hoffmann, D., Mussolin, C., Martin, R., & Schiltz, C. (2014a). The impact of mathematical proficiency on the number-space association. PLoS ONE, 9, 85048.  https://doi.org/10.1371/journal.pone.0085048 CrossRefGoogle Scholar
  33. Hoffmann, D., Pigat, D., & Schiltz, C. (2014b). The impact of inhibition capacities and age on number-space associations. Cognitive Processing, 15, 329–342.  https://doi.org/10.1007/s10339-014-0601-9 CrossRefGoogle Scholar
  34. Huber, S., Klein, E., Graf, M., Nuerk, H.-C., Moeller, K., & Willmes, K. (2015). Embodied markedness of parity? Examining handedness effects on parity judgments. Psychological Research, 79, 963–977.  https://doi.org/10.1007/s00426-014-0626-9 CrossRefGoogle Scholar
  35. Huber, S., Nuerk, H.-C., Reips, U.-D., & Soltanlou, M. (2017). Individual differences influence two-digit number processing, but not their analog magnitude processing: A large-scale online study. Psychological Research, 1–21. Advance online publication  https://doi.org/10.1007/s00426-017-0964-5
  36. JASP Team. (2018). Jasp (Version 0.8.6) [Computer software]. Retrieved from https://jasp-stats.org/download/
  37. Krajcsi, A., Lengyel, G., & Laczkó, Á. (2018). Interference between number magnitude and parity. Experimental Psychology, 65, 71–83.  https://doi.org/10.1027/1618-3169/a000394 CrossRefGoogle Scholar
  38. Krantz, J. H., & Reips, U.-D. (2017). The state of web-based research: A survey and call for inclusion in curricula. Behavior Research Methods, 49, 1621–1629.  https://doi.org/10.3758/s13428-017-0882-x CrossRefGoogle Scholar
  39. Lorch, R. F., & Myers, J. L. (1990). Regression analyses of repeated measures data in cognitive research. Journal of Experimental Psychology. Learning, Memory, and Cognition, 16, 149–157.  https://doi.org/10.1037/0278-7393.16.1.149 CrossRefGoogle Scholar
  40. Lyons, J. (1968). Semantics. Cambridge: Cambridge University Press.Google Scholar
  41. Maloney, E. A., Risko, E. F., Preston, F., Ansari, D., & Fugelsang, J. (2010). Challenging the reliability and validity of cognitive measures: The case of the numerical distance effect. Acta Psychologica, 134, 154–161.  https://doi.org/10.1016/j.actpsy.2010.01.006 CrossRefGoogle Scholar
  42. Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, 43, 679–690.  https://doi.org/10.3758/s13428-010-0049-5 CrossRefGoogle Scholar
  43. Nemeh, F., Humberstone, J., Yates, M. J., & Reeve, R. A. (2018). Non-symbolic magnitudes are represented spatially: Evidence from a non-symbolic SNARC task. PLOS ONE, 13, e0203019.  https://doi.org/10.1371/journal.pone.0203019 CrossRefGoogle Scholar
  44. Ninaus, M., Moeller, K., Kaufmann, L., Fischer, M. H., Nuerk, H.-C., & Wood, G. (2017). Cognitive mechanisms underlying directional and non-directional spatial–numerical associations across the lifespan. Frontiers in Psychology, 8, 1421.  https://doi.org/10.3389/fpsyg.2017.01421 CrossRefGoogle Scholar
  45. Nuerk, H.-C., Bauer, F., Krummenacher, J., Heller, D., & Willmes, K. (2005a). The power of the mental number line : how the magnitude of unattended numbers affects performance in an Eriksen task. Psychology, 47, 34–50. Retrieved from http://www.pabst-publishers.de/psychology-science/1-2005/ps_1_2005_34-50.pdf Google Scholar
  46. Nuerk, H.-C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. Quarterly Journal of Experimental Psychology, 57A, 835–863.  https://doi.org/10.1080/02724980343000512 CrossRefGoogle Scholar
  47. Nuerk, H.-C., Patro, K., Cress, U., Schild, U., Friedrich, C. K., & Göbel, S. M. (2015). How space-number associations may be created in preliterate children: Six distinct mechanisms. Frontiers in Psychology, 6, 1–6.  https://doi.org/10.3389/fpsyg.2015.00215 CrossRefGoogle Scholar
  48. Nuerk, H.-C., Wood, G., & Willmes, K. (2005b). The universal SNARC effect: The association between number magnitude and space is amodal. Experimental Psychology, 52, 187–194.  https://doi.org/10.1027/1618-3169.52.3.187 CrossRefGoogle Scholar
  49. Open Science Collaboration (2015). Estimating the reproducibility of psychological science. Science, 349, aac4716.  https://doi.org/10.1126/science.aac4716 CrossRefGoogle Scholar
  50. Patro, K., Fischer, U., Nuerk, H.-C., & Cress, U. (2016a). How to rapidly construct a spatial–numerical representation in preliterate children (at least temporarily). Developmental Science, 19, 126–144.  https://doi.org/10.1111/desc.12296 CrossRefGoogle Scholar
  51. Patro, K., & Haman, M. (2012). The spatial–numerical congruity effect in preschoolers. Journal of Experimental Child Psychology, 111, 534–542.  https://doi.org/10.1016/j.jecp.2011.09.006 CrossRefGoogle Scholar
  52. Patro, K., & Nuerk, H.-C. (2017). Limitations of trans-species inferences: The case of spatial–numerical associations in chicks and humans. Cognitive Science, 41, 2267–2274.  https://doi.org/10.1111/cogs.12432 CrossRefGoogle Scholar
  53. Patro, K., Nuerk, H.-C., & Cress, U. (2016b). Mental number line in the preliterate brain: The role of early directional experiences. Child Development Perspectives, 10, 172–177.  https://doi.org/10.1111/cdep.12179 CrossRefGoogle Scholar
  54. Pinhas, M., Tzelgov, J., & Ganor-Stern, D. (2012). Estimating linear effects in ANOVA designs: The easy way. Behavior Research Methods, 44, 788–794.  https://doi.org/10.3758/s13428-011-0172-y CrossRefGoogle Scholar
  55. Priftis, K., Zorzi, M., Meneghello, F., Marenzi, R., & Umiltà, C. (2006). Explicit versus implicit processing of representational space in neglect: Dissociations in accessing the mental number line. Journal of Cognitive Neuroscience, 18, 680–688.  https://doi.org/10.1162/jocn.2006.18.4.680 CrossRefGoogle Scholar
  56. Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132, 416–442.  https://doi.org/10.1037/0033-2909.132.3.416 CrossRefGoogle Scholar
  57. Raftery, A. E. (1995). Bayesian model selection in social research. In P. V. Madsen (Ed.), Sociological methodology (pp. 111–196). Cambridge: Blackwell.Google Scholar
  58. Reips, U.-D. (2000). The web experiment method: Advantages, disadvantages, and solutions. In M. H. Birnbaum (Ed.), Psychological experiments on the Internet (pp. 89–118). San Diego: Academic Press.  https://doi.org/10.5167/uzh-19760 CrossRefGoogle Scholar
  59. Reips, U.-D. (2002). Standards for Internet-based experimenting. Experimental Psychology, 49, 243–256.  https://doi.org/10.1026//1618-3169.49.4.243 CrossRefGoogle Scholar
  60. Reips, U.-D. (2012). Using the Internet to collect data. In H. Cooper, P. M. Camic, R. Gonzalez, D. L. Long, A. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology: Vol. 2. Research designs: Quantitative, qualitative, neuropsychological, and biological (pp. 291–310). Washington, DC: American Psychological Association.  https://doi.org/10.1037/13620-017 CrossRefGoogle Scholar
  61. Reips, U.-D., Buchanan, T., Krantz, J., & McGraw, K. (2015). Methodological challenges in the use of the Internet for scientific research: Ten solutions and recommendations. Studia Psychologica, 15, 139–148.CrossRefGoogle Scholar
  62. Reips, U.-D., & Krantz, J. H. (2010). Conducting true experiments on the Web. In S. Gosling & J. Johnson (Eds.), Advanced methods for conducting online behavioral research (pp. 139–216). Washington DC: American Psychological Association.Google Scholar
  63. Reips, U.-D., & Lengler, R. (2005). TheWeb Experiment List: A web service for the recruitment of participants and archiving of Internet-based experiments. Behavior Research Methods, 37, 287–292.  https://doi.org/10.3758/BF03192696 CrossRefGoogle Scholar
  64. Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347, 534–536.  https://doi.org/10.1126/science.aaa1379 CrossRefGoogle Scholar
  65. Schmidt, W. C. (2007). Technical considerations when implementing online research. In A. N. Joinson, K. Y. A. McKenna, T. Postmes, & U.-D. Reips (Eds.), The Oxford handbook of Internet psychology (pp. 461–472). Oxford: Oxford University Press.Google Scholar
  66. Schroeder, P. A., Nuerk, H.-C., & Plewnia, C. (2017). Switching between multiple codes of SNARC-like associations: Two conceptual replication attempts with anodal tDCS in sham-controlled cross-over design. Frontiers in Neuroscience, 11.  https://doi.org/10.3389/fnins.2017.00654
  67. Schwarz, W., & Müller, D. (2006). Spatial associations in number-related tasks: A comparison of manual and pedal responses. Experimental Psychology, 53, 4–15.  https://doi.org/10.1027/1618-3169.53.1.4 CrossRefGoogle Scholar
  68. Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16, 328–331.  https://doi.org/10.3758/PBR.16.2.328 CrossRefGoogle Scholar
  69. Tlauka, M. (2002). The processing of numbers in choice-reaction tasks. Australian Journal of Psychology, 54, 94–98.  https://doi.org/10.1080/00049530210001706553 CrossRefGoogle Scholar
  70. Tzelgov, J., Zohar-Shai, B., & Nuerk, H.-C. (2013). On defining quantifying and measuring the SNARC effect. Frontiers in Psychology, 4, 302:3–5.  https://doi.org/10.3389/fpsyg.2013.00302
  71. Viarouge, A., Hubbard, E. M., & McCandliss, B. D. (2014). The cognitive mechanisms of the SNARC effect: An individual differences approach. PLoS ONE, 9, e95756.  https://doi.org/10.1371/journal.pone.0095756 CrossRefGoogle Scholar
  72. Wagenmakers, E. J., Verhagen, J., & Ly, A. (2016). How to quantify the evidence for the absence of a correlation. Behavior Research Methods, 48, 413–426.  https://doi.org/10.3758/s13428-015-0593-0 CrossRefGoogle Scholar
  73. Wood, G., Nuerk, H.-C., & Willmes, K. (2006). Variability of the SNARC effect: Systematic interindividual differences or just random error? Cortex, 42, 1119–1123.  https://doi.org/10.1016/S0010-9452(08)70223-5
  74. Wood, G., Willmes, K., Nuerk, H.-C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science Quarterly, 4, 489–525.  https://doi.org/10.1027/1618-3169.52.3.187 Google Scholar
  75. Zohar-Shai, B., Tzelgov, J., Karni, A., & Rubinsten, O. (2017). It does exist! A left-to-right spatial–numerical association of response codes (SNARC) effect among native Hebrew speakers. Journal of Experimental Psychology: Human Perception and Performance, 43, 719–728.  https://doi.org/10.1037/xhp0000336 Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of TuebingenTuebingenGermany
  2. 2.LEAD Graduate School & Research NetworkUniversity of TuebingenTuebingenGermany
  3. 3.Leibniz-Institut für WissensmedienTuebingenGermany
  4. 4.Department of PsychologyUniversity of KonstanzKonstanzGermany

Personalised recommendations